Math, asked by aaanswer, 17 days ago

How to prove this without mathematical induction?
\implies 2^{x}\leq2\times(x!)

Attachments:

Answers

Answered by vikasreddygaddam4
0

Answer:

5 IST 5 =10

Step-by-step explanation:

Answered by user0888
7

\large\underline{\text{Solution}}

Consider the two logarithms.

\implies\log2^{x}

\implies\log2x!

\red{\bigstar}The properties of logarithms.

\implies\log a+\log b=\log ab

\implies\log m^{n}=n\log m

Then

\implies\log2^{x}=x\log2

\implies\log2x!=\log2+(\log1+\log2+\cdots+\log x)

We divide both by \log2.

\implies\dfrac{x\log2}{\log2}=x

\implies\dfrac{\log2x!}{\log2}=1+\dfrac{\log1+\log2+\cdots+\log x}{\log2}

Then let's check the second equation.

\implies1+\dfrac{\log1+\log2+\cdots+\log x}{\log2}=1+\dfrac{\log1}{\log2}+\dfrac{\log2}{\log2}+\cdots+\dfrac{\log x}{\log2}

\red{\bigstar}We spot the series of logarithms.

\implies a_{n}=\dfrac{\log n}{\log2}

\red{\bigstar}Each of the terms compares to 0 and 1.

a_{n}=\begin{cases} & \text{for }n=1, a_{n}=0 \\  & \text{for }n=2, a_{n}=1 \\ & \text{for }n\geq3, a_{n}>1\end{cases}

Thus

\implies1+\dfrac{\log1}{\log2}+\dfrac{\log2}{\log2}+\cdots+\dfrac{\log x}{\log2}\geq1+0+1+1+\cdots+1=x

Hence

\implies\dfrac{\log2x!}{\log2}\geq x

We multiply the inequality by \log2.

\implies\log2x!\geq x\log2

\implies x\log2\leq\log2x!

\implies \log2^{x}\leq\log2x!

Thereby

\implies 2^{x}\leq2x!\text{ (Equals when }x=1\text{ or }x=2\text{)}

Hence proven.

\large\underline{\text{Answers of different methods}}

(Mathematical induction method)

  • https://brainly.in/question/46938459
Similar questions