Math, asked by Anonymous, 9 months ago

how to rationalize it?
 \frac{1}{2}  \times  \frac{ \sqrt{3} }{2( 1+  \sqrt{3}) }




*Step by step*

Answers

Answered by ShresthaTheMetalGuy
3

QUESTION

Rationalise:

» \frac{1}{2}   \times  \frac{ \sqrt{3} }{2( 1+  \sqrt{3}) }

.

.

SOLUTION

ON SIMPLIFYING THE GIVEN EXPRESSION gives:

» \frac{ \sqrt{3} }{4} \times  \frac{1}{  \sqrt{3} + 1 }

.

.

NOW,

For Rationalising the denominator:

On multiplying both numerator and denominator by such an expression,

so as to convert numerator or denominator into an applicable identity.

E.g. Multiplying both numerator and denominator by "(√3–1)" gives:

» \frac{ \sqrt{3} }{4}  \times ( \frac{1}{ \sqrt{3}  + 1}  \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3} - 1 } )

» \frac{ \sqrt{3} }{4}  \times  \frac{ \sqrt{3} - 1 }{( \sqrt{3}) {}^{2}  - (1) {}^{2}  }

» \frac{ \sqrt{3} }{4}  \times  \frac{ \sqrt{3}  - 1}{3 - 1}

» \frac{ \sqrt{3} }{4}  \times  ( \frac{ \sqrt{3}  - 1}{2} )

» \frac{( \sqrt{3} )( \sqrt{3} ) - (1)( \sqrt{3}) }{4 \times 2}

» \frac{3 -  \sqrt{3} }{8}

.

.

ANSWER

»   \frac{1}{2}  \times  \frac{ \sqrt{3} }{2(1 +  \sqrt{3}) } = \frac{3 -  \sqrt{3} }{8}

Answered by Anonymous
0

Your answer is in the attachment.

Hope it'll help.

~ A.R.M.Y ~

Attachments:
Similar questions