Math, asked by Anonymous, 10 months ago

how to rationalize it?
 \frac{1}{2} \times \frac{ \sqrt{3} }{2( 1+ \sqrt{3}) }

Answers

Answered by Anonymous
1

Answer:

 \frac{ 3 - \sqrt{3}  }{8}

Step-by-step explanation:

 \frac{1}{2}  \times  \frac{ \sqrt{3} }{2 \times (1 +  \sqrt{3)} }  \\  \\  =  \frac{1}{4}  \times  \frac{ \sqrt{3}( { }1 -  \sqrt{3)} }{ {1}^{2}  -  {( \sqrt{3} )}^{2} }  \\  \\  =  \frac{1}{4}  \times  \frac{ \sqrt{3}  - 3}{(1 - 3)}  \\  \\ =  \frac{ \sqrt{3 }  - 3}{-8}

Answered by Anonymous
2

Here's your answer :-

Question :-

 \frac{1}{2} \times \frac{ \sqrt{3} }{2( 1+ \sqrt{3}) }

Solution :-

 =  >  \frac{1}{2}  \times  \frac{ \sqrt{3} }{2(1 +  \sqrt{3} )}

 =  >  \frac{ \sqrt{3} }{4(1 + \sqrt{3})}

 =  >  \frac{ \sqrt{3} }{4}  \times ( \frac{1}{1 +  \sqrt{3} })

• Now, keep √3/4 aside for a minute and rationalize by 1/1+√3 in both numerator and denominater.

 =  >  \frac{1 - \sqrt{3} }{(1 +  \sqrt{3})(1 -  \sqrt{3})} =  \frac{1 -  \sqrt{3} }{(1 - 3)}

• Now, multiply √3/4 by the following :-

 =  > \frac{ \sqrt{3} \times(1 -  \sqrt{3})}{4(1 - 3)}

  =  > \frac{ \sqrt{3} - 3 }{4( - 2)}

• Take -ve sign common outside the parenthesis.

   =  > \frac{ - ( -  \sqrt{3} - + 3)}{ - (8)}

 =  >  \frac{3 -  \sqrt{3} }{8}

Hope it helps!

~ A.R.M.Y ~

Similar questions