How to rationalize the denominator of 5-3√14/7+2√14
Answers
GIVEN :
How to rationalize the denominator of
TO FIND :
The rationalize the denominator of the given expression
SOLUTION :
Given that the expression is
Now rationalize the expression as below,
Multiply and dividing by the denominator's conjugate we get,
By using the Distributive property :
(a+b)x=ax+ay
By using the Algebraic identity :
By using the property of square root :
By adding the like terms,
or
∴
or
∴ the given expression the rationalized denominator becomes or .
Step-by-step explanation:
GIVEN :
How to rationalize the denominator of \frac{5-3\sqrt{14}}{7+2\sqrt{14}}
7+2
14
5−3
14
TO FIND :
The rationalize the denominator of the given expression \frac{5-3\sqrt{14}}{7+2\sqrt{14}}
7+2
14
5−3
14
SOLUTION :
Given that the expression is \frac{5-3\sqrt{14}}{7+2\sqrt{14}}
7+2
14
5−3
14
Now rationalize the expression as below,
\frac{5-3\sqrt{14}}{7+2\sqrt{14}}
7+2
14
5−3
14
Multiply and dividing by the denominator's conjugate we get,
=\frac{5-3\sqrt{14}\times (7-2\sqrt{14})}{(7+2\sqrt{14})\times (7-2\sqrt{14})}=
(7+2
14
)×(7−2
14
)
5−3
14
×(7−2
14
)
By using the Distributive property :
(a+b)x=ax+ay
By using the Algebraic identity :
(a+b)(a-b)=a^2-b^2(a+b)(a−b)=a
2
−b
2
=\frac{5(7)+5(-2\sqrt{14})+(-3\sqrt{14})(7)+(-3\sqrt{14})(-2\sqrt{14})}{7^2-(2\sqrt{14})^2}=
7
2
−(2
14
)
2
5(7)+5(−2
14
)+(−3
14
)(7)+(−3
14
)(−2
14
)
=\frac{35-10\sqrt{14}-21\sqrt{14}+6(14)}{49-(-2^2)(\sqrt{14})^2}=
49−(−2
2
)(
14
)
2
35−10
14
−21
14
+6(14)
By using the property of square root :
\sqrt{a}^2=a
a
2
=a
=\frac{35-31\sqrt{14}+84}{49-(4)(14)}=
49−(4)(14)
35−31
14
+84
By adding the like terms,
=\frac{119-31\sqrt{14}}{49-56}=
49−56
119−31
14
=\frac{119-31\sqrt{14}}{-7}=
−7
119−31
14
=\frac{-119+31\sqrt{14}}{7}=
7
−119+31
14
or =\frac{31\sqrt{14}-119}{7}=
7
31
14
−119
∴ \frac{5-3\sqrt{14}}{7+2\sqrt{14}}=\frac{-119+31\sqrt{14}}{7}
7+2
14
5−3
14
=
7
−119+31
14
or \frac{5-3\sqrt{14}}{7+2\sqrt{14}}=\frac{31\sqrt{14}-119}{7}
7+2
14
5−3
14
=
7
31
14
−119
∴ the given expression the rationalized denominator becomes \frac{-119+31\sqrt{14}}{7}
7
−119+31
14
or \frac{31\sqrt{14}-119}{7}
7
31
14
−119
.