Math, asked by niranjangangarapu, 1 year ago

How to Rationalize the denominator of 6-4√2/6+4√2

Answers

Answered by LovelyG
2

Answer:

17 - 3√2

Step-by-step explanation:

Given that ;

 \sf  \dfrac{6 - 4 \sqrt{2} }{6 + 4 \sqrt{2} }

To rationalise the denominator, multiply the numerator and denominator by the rationalising factor, i.e., (6 - 4 √2).

 \sf  \frac{6 - 4 \sqrt{2} }{6 + 4 \sqrt{2} }  \\  \\ \sf  \frac{6 - 4 \sqrt{2} }{6 + 4 \sqrt{2} }  \times  \frac{6 - 4 \sqrt{2} }{6 - 4 \sqrt{2} }  \\  \\ \sf  \frac{(6 - 4 \sqrt{2}) {}^{2}  }{(6) {}^{2}  - (4 \sqrt{2} ) {}^{2} }  \\  \\ \sf  \frac{(6) {}^{2} + (4 \sqrt{2})^{2} - 2 \times 6 \times 4 \sqrt{2}  }{36 - 32}  \\  \\ \sf  \frac{36 + 32 - 12 \sqrt{2} }{4}  \\  \\ \sf  \frac{4(9 + 8 - 3 \sqrt{2}) }{4}  \\  \\ \implies \sf 17 - 3 \sqrt{2}

Hence, the answer is (17 - 3 √2).

Similar questions