how to read System of Capaciter C = 9. V 9 V - V.
Answers
Answer:
A capacitor is a device used to store electric charge. Capacitors have applications ranging from filtering static out of radio reception to energy storage in heart defibrillators. Typically, commercial capacitors have two conducting parts close to one another, but not touching, such as those in Figure 1. (Most of the time an insulator is used between the two plates to provide separation—see the discussion on dielectrics below.) When battery terminals are connected to an initially uncharged capacitor, equal amounts of positive and negative charge, +Q and –Q, are separated into its two plates. The capacitor remains neutral overall, but we refer to it as storing a charge Q in this circumstance.
where the symbol ∝ means “proportional to.” From the discussion in Electric Potential in a Uniform Electric Field, we know that the voltage across parallel plates is
V = Ed.
Thus, V∝E. It follows, then, that V∝Q, and conversely,
Q∝V.
This is true in general: The greater the voltage applied to any capacitor, the greater the charge stored in it.
Different capacitors will store different amounts of charge for the same applied voltage, depending on their physical characteristics. We define their capacitance C to be such that the charge Q stored in a capacitor is proportional to C. The charge stored in a capacitor is given by
Q = CV.
This equation expresses the two major factors affecting the amount of charge stored. Those factors are the physical characteristics of the capacitor, C, and the voltage, V. Rearranging the equation, we see that capacitance C is the amount of charge stored per volt, or
C
=
Q
V