How to reduce the formation of vortesx and boundaty layer seoperation?
Answers
AnswerGoldstein S. 1948On laminar boundary layer flow near a position of separation. Q. J. Mech. Appl. Math. 1, 43–69. (doi:10.1093/qjmam/1.1.43). Crossref, Google Scholar
2
Lighthill MJ. 1953On boundary layers and upstream influence. I. A comparison between subsonic and supersonic flows. Proc. R. Soc. Lond. A 217, 344–357. (doi:10.1098/rspa.1953.0067). Google Scholar
3
Lighthill MJ. 1953On boundary layers and upstream influence. II. Supersonic flows without separation. Proc. R. Soc. Lond. A 217, 478–507. (doi:10.1098/rspa.1953.0075). Google Scholar
4
Stewartson K. 1969On the flow near the trailing edge of a flat plate – II. Mathematika 16, 106–121. (doi:10.1112/S0025579300004678). Crossref, Google Scholar
5
Messiter AF. 1970Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18, 241–257. (doi:10.1137/0118020). Crossref, Google Scholar
6
Neiland VYa. 1969Theory of laminar boundary-layer separation in supersonic flow. Izv. Akad. Nauk. SSSR. MZhG 4, 33–35. (doi:10.1007/BF01094681). Google Scholar
7
Smith FT. 1977The laminar separation of an incompressible fluid streaming past a smooth surface. Proc. R. Soc. Lond. A 356, 443–463. (doi:10.1098/rspa.1977.0144). Link, Google Scholar
8
Smith FT. 1982On the high Reynolds number theory of laminar flows. IMA J. Appl. Math. 28, 207–281. (doi:10.1093/imamat/28.3.207). Crossref, ISI, Google Scholar
9
Stewartson K. 1974Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14, 145–239. (doi:10.1016/S0065-2156(08)70032-2). Crossref, Google Scholar
10
Doligalski TL, Smith CR& Walker JDA. 1994Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573–616. (doi:10.1146/annurev.fl.26.010194.003041). Crossref, Google Scholar
11
Affes H& Conlisk AT. 1993A model for rotor tip vortex–airframe interaction. Part 1: theory. AIAA J. 31, 2263–2273. (doi:10.2514/3.11924). Crossref, Google Scholar
12
Affes H, Conlisk AT, Kim JM& Komerath NM. 1993A model for rotor tip vortex–airframe interaction. Part 2: comparison with experiment. AIAA J. 31, 2274–2282. (doi:10.2514/3.11925). Crossref, Google Scholar
13
Affes H, Xiao Z& Conlisk AT. 1994The boundary-layer flow due to a vortex approaching a cylinder. J. Fluid Mech. 275, 33–57. (doi:10.1017/S0022112094002272). Crossref, Google Scholar
14
Conlisk AT. 1997Modern helicopter aerodynamics. Annu. Rev. Fluid Mech. 27, 515–567. (doi:10.1146/annurev.fluid.29.1.515). Crossref, Google Scholar
15
Conlisk AT. 2001Modern helicopter rotor aerodynamics. Prog. Aero. Sci. 37, 419–476. (doi:10.1016/S0376-0421(01)00011-2). Crossref, Google Scholar
16
Moore FK. 1958On the separation of the unsteady laminar boundary layer. Boundary-layer research (ed & Görtler HG), pp. 296–310. Berlin, Germany: Springer. Google Scholar
17
Rott N. 1956Unsteady viscous flow in the vicinity of a stagnation point. Q. Appl. Math. 13, 444–451. Crossref, Google Scholar
18
Sears WR. 1956Some recent developments in airfoil theory. J. Aeronaut. Sci. 23, 490–499. (doi:10.2514/8.3588). Crossref, Google Scholar
19
Smith FT. 1986Steady and unsteady boundary layer separation. Annu. Rev. Fluid Mech. 18, 197–220. (doi:10.1146/annurev.fl.18.010186.001213). Crossref, Google Scholar
Explanation:
Answer:
Locate the intake penetration at least five times its inside diameter from the nearest reservoir wall, and no less than half its inside diameter, (but at least 100 mm or 4"), off the bottom.
Ensure the intake penetration always remains submerged by at least twice its inside diameter.