How to show that an element in a quotient ring of polynomial is not a zero element
Answers
Lemma. Let R be a commutative ring, and suppose $a(x), b(x), p(x) \in R[x]$ . Then $a(x)
= b(x) \mod{p(x)}$ if and only if $a(x) +
\langle p(x) \rangle = b(x) + \langle p(x) \rangle$ .
Proof. Suppose $a(x) = b(x)
\mod{p(x)}$ . Then $a(x) = b(x) +
k(x) \cdot p(x)$ for some $k(x) \in R[x]$ . Hence,
$$a(x) + \langle p(x) \rangle = b(x) + k(x) \cdot p(x) + \langle p(x) \rangle = b(x) + \langle p(x) \rangle.$$
Conversely, suppose $a(x) + \langle
p(x) \rangle = b(x) + \langle p(x) \rangle$ . Then
$$a(x) \in a(x) + \langle p(x) \rangle = b(x) + \langle p(x) \rangle.$$
Hence,
$$a(x) = b(x) + k(x) \cdot p(x) \quad\hbox{for some}\quad k(x) \in R[x].$$
This means that $a(x) = b(x) \mod{p(x)}$ .
Depending on the situation, I may write $a(x) = b(x)
\mod{p(x)}$ or $a(x) + \langle
p(x) \rangle = b(x) + \langle p(x) \rangle$ .