how to show that sum of n odd terms =n^2 correct answers please
quick
quick
quick
Answers
Answered by
0
Answer:
This is your answer
Step-by-step explanation:
S=1+3+5+⋯+(2n−5)+(2n−3)+(2n−1)is the sum of the first n odd numbersS=1+3+5+⋯+(2n−5)+(2n−3)+(2n−1)is the sum of the first n odd numbers
We can also writeWe can also write
S=(2n−1)+(2n−3)+(2n−5)+⋯+5+3+1S=(2n−1)+(2n−3)+(2n−5)+⋯+5+3+1
Adding both results in sequenceAdding both results in sequence
2 S=[1+(2n−1]+[3+(2n−3)]+[5+(2n−5)]+⋯+[(2n−5)+5]+[(2n−3)+3]+[(2n−1)+1]2 S=[1+(2n−1]+[3+(2n−3)]+[5+(2n−5)]+⋯+[(2n−5)+5]+[(2n−3)+3]+[(2n−1)+1]
⟹2 S=(2n)+(2n)+(2n)+⋯+(2n)+(2n)+(2n)n terms⟹2 S=(2n)+(2n)+(2n)+⋯+(2n)+(2n)+(2n)n terms
⟹2 S=(2n)(n)⟹2 S=(2n)(n)
⟹2 S=2n2⟹2 S=2n2
⟹2 S=n2⟹2 S=n2
⟹1+3+5+⋯+(2n−5)+(2n−3)+(2n−1)=n2
Similar questions
Social Sciences,
4 months ago
English,
4 months ago
Math,
9 months ago
Business Studies,
1 year ago
Physics,
1 year ago