Math, asked by ammu4383, 3 months ago

how to slove this question ​

Attachments:

Answers

Answered by Anonymous
105

Answer:

Solution:-

  • x = 30° [ Vertically opposite angles ]

  • z = 90° [ Given ]

  • 30° + z + 3y = 180°

  • 30° + 90° + 3y = 180°

  • 3y = 60°

  • y = 20°

The value of x y and z are 30° , 20° and 90°.

━━━━━━━━━━━━━━━━━━

Answered by llMsFlawlessll
52

\huge\bf{\underline{\overline{\pink{Solution :}}}}

{\leadsto{\boxed {\boxed {\purple {\mathfrak x={30}^{\circ}}}}}}  \bf\longrightarrow \Big(Vertically \: Opposite \: Angle \Big)

 \\

{\leadsto{\boxed {\boxed {\purple {\mathfrak z={90}^{\circ}}}}}}  \bf\longrightarrow \Big(Vertically \: Opposite \: Angle \Big)

 \\

 \leadsto \sf x+ 3y+ z={180}^{\circ}

 \leadsto \sf {30}^{\circ} + 3y+{90}^{\circ} ={180}^{\circ}

 \leadsto \sf {120}^{\circ} +3y={180}^{\circ}

 \leadsto \sf 3y={180}^{\circ}-{120}^{\circ}

 \leadsto \sf 3y={60}^{\circ}

 \leadsto \sf y=\dfrac{60}{3}

 \leadsto \sf y=\dfrac{\cancel{60}}{\cancel{3}}

\leadsto{\boxed {\boxed {\purple {\mathfrak y={20}^{\circ}}}}}

 {\pmb{\orange {\bf \therefore \:The\:\: values \: are}}} \begin{cases}{\pink{\bf{x={30}^{\circ}}}} \\{\pink{\bf {y={20}^{\circ}}}}\\{\pink{\bf{z={90}^{\circ}}}}\end{cases}

Similar questions