Math, asked by savinleena864, 10 months ago

How to solve (1/x+2)-(1/x-2)=1

Answers

Answered by Delta13
2

\large{\underline{\boxed{\text{Question:}}}} </p><p>

 \frac{1}{x + 2}  -  \left (\frac{1}{x - 2}   \right)= 1

\large{\underline{\boxed{\text{Solution:}}}}</p><p>

We have,

 \frac{1}{x + 2}  -  \frac{1}{x - 2}  = 1

Simplifying by taking LCM

 \implies \frac{1(x - 2) - 1(x + 2)}{(x - 2)(x + 2)}  = 1 \\  \\  \implies  \frac{x - 2 - (x + 2)}{ {x}^{2}  -  {(2)}^{2} }  = 1 \\  \\  \textsf{using  identity} \\  \\ \underline { (a + b)(a - b) =  {a}^{2} -  {b}^{2} } \\  \\  \implies \frac{ \cancel {x}  - 2 -  \cancel {x}   - 2}{ {x}^{2} - 4 }  = 1 \\  \\  \implies  - 4 = 1( {x}^{2}  - 4) \\  \\  \implies  {x}^{2}  - 4 =  - 4 \\  \\  \implies {x}^{2}  =  -  \cancel{4} + \cancel{ 4}\\  \\  \implies {x}^{2}  = 0 \\  \\  \implies  \underline{\boxed{ \textsf{{\green{x = 0}}}}}

Similar questions