Math, asked by genuineproducts, 2 months ago

how to solve 2n^2+n-(2(n-1)^2-(n-1))=?
Please help me​

Attachments:

Answers

Answered by visankreddy
1

Answer:

a=3 and d=6

using the appropriate method above equation is solved

Attachments:
Answered by amansharma264
2

EXPLANATION.

⇒ aₙ = 2n² + n - [2(n - 1)² - (n - 1)].

As we know that,

Formula of :

⇒ (a - b)² = a² + b² - 2ab.

Using this formula in equation, we get.

Simplify the whole equation, we get.

⇒ aₙ = 2n² + n - [2(n² + 1 - 2n) - n + 1].

⇒ aₙ = 2n² + n - [2n² + 2 - 4n - n + 1].

⇒ aₙ = 2n² + n - [2n² - 5n + 3].

⇒ aₙ = 2n² + n - 2n² + 5n - 3.

⇒ aₙ = 5n + n - 3.

⇒ aₙ = 6n - 3.

As we know that,

Put the value of n = 1 in equation, we get.

⇒ 6(1) - 3.

⇒ 3.

Put the value of n = 2 in equation, we get.

⇒ 6(2) - 3.

⇒ 12 - 3 = 9.

Put the value of n = 3 in equation, we get.

⇒ 6(3) - 3.

⇒ 18 - 3.

⇒ 15.

Put the value of n = 4 in equation, we get.

⇒ 6(4) - 3.

⇒ 24 - 3.

⇒ 21.

⇒ Series = 3, 9, 15, 21 ,,,,,,,,

First term = a = 3.

Common difference = d = b - a = 9 - 3 = 6.

Algebraic expression = 6n - 3.

                                                                                                                   

MORE INFORMATION.

Supposition of terms in an A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a, a + d, a + 2d.

Similar questions