Math, asked by Mdamaan8233, 15 hours ago

How to solve (2x + 1) 3 by using identity?

Answers

Answered by Ꮪαɾα
56

Question :-

→  (2x + 1)³

Solution :-

→  (2x)³ + (1)³ + 3(2x)(1) (2x+1)

→  8x³ + 1 + 6x(2x+1)

→  8x³ + 1 + 12x² + 6x

→  8x³ + 12x² + 6x + 1

Identity used :-

→  (a + b)³ = a³ + b³ + 3ab(a+b)

Where,

a = 2x, b = 1

Answered by IIMrVelvetII
35

QUESTION :- Solve  \sf  {(2x + 1)}^{3} using suitable identity.

SOLUTION :-

Using identity,

 \sf \star \fbox \green{{(a + b)}^{3} =  {x}^{3} + {y}^{3} + 3ab(a + b)}

Here a = \sf 2x and b = \sf 1

 \sf  {(2x + 1)}^{3}

 \sf →{(2x)}^{3} +  {1}^{3} + 3(2x)(1)(2x + 1)

 \sf → {8x}^{3} + 1 + 6x(2x + 1)

 \sf  \blue{→ {8x}^{3} +  {12x}^{2} + 6x + 1}

Hence  \sf  {(2x + 1)}^{3} is equal to  \sf {8x}^{3} +  {12x}^{2} + 6x + 1.

Similar questions