Math, asked by makwanavishal3665, 9 months ago

How to solve 5 m square + 2 m+ 1 equals to zero by completing the square method

Answers

Answered by rajeevr06
1

Answer:

5 {x}^{2}  + 2x + 1 = 0

( \sqrt{5} x) {}^{2}  + 2 \times  \sqrt{5} x \times  \frac{1}{ \sqrt{5} }  + ( { \frac{1}{ \sqrt{5} }) }^{2}    + 1 - ( { \frac{1}{ \sqrt{5} }) }^{2}  = 0

( { \sqrt{5}x +  \frac{1}{ \sqrt{5} })  }^{2}  + 1 -  \frac{1}{5}  = 0

( { \sqrt{5} x +  \frac{1}{ \sqrt{5} }) }^{2}  =  -  \frac{4}{5}

 \sqrt{5} x +  \frac{1}{ \sqrt{5} }  =   \frac{2}{ \sqrt{5} } i \:  \:  \: or \:  -  \frac{2}{ \sqrt{5} } i

 \sqrt{5} x =  \frac{ - 1 + 2i}{ \sqrt{5} }  \:  \:  \: or \:  \:  \:  \frac{ - 1 - 2i}{ \sqrt{5} }

Mark BRAINLIEST if you think. Thanks

Similar questions