Math, asked by seth87, 1 year ago

how to solve .............................................​

Attachments:

sivaprasath: 1) (B) 14 , 2) (D) 2(2a^2 - b^2)/b^2 , 3) (B) 3 - root 5
sivaprasath: 1) (A) 10

Answers

Answered by sivaprasath
1

Answer:

Step-by-step explanation:

Given :

To find the value of :

 143

   Σ \frac{1}{\sqrt{k+1} + \sqrt{k} }

k = 4

Solution :

\frac{1}{\sqrt{k+1} + \sqrt{k} }

By taking conjugate ,

⇒  \frac{1}{\sqrt{k+1} + \sqrt{k} } = \frac{1}{\sqrt{k+1}+\sqrt{k} }\times \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} = \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k+1})^2 - (\sqrt{k})^2} = \frac{\sqrt{k+1} - \sqrt{k}}{k+1 - k} = \frac{\sqrt{k+1} - \sqrt{k}}{1}

\sqrt{k+1} - \sqrt{k}

  143

   Σ \frac{1}{\sqrt{k+1} + \sqrt{k} }

k = 4

 143

   Σ \sqrt{k+1} - \sqrt{k}

k = 4

(\sqrt{4+1} - \sqrt{4} ) + (\sqrt{5+1} - \sqrt{5} ) + .... + (\sqrt{142+1} - \sqrt{142} ) + (\sqrt{143+1} - \sqrt{143} )

(\sqrt{5} - \sqrt{4} ) + (\sqrt{6} - \sqrt{5} ) + .... + (\sqrt{143} - \sqrt{142} ) + (\sqrt{144} - \sqrt{143} )

\sqrt{144} - \sqrt{4} = 12 - 2 = 10  (not 14,.sorry)

__

Given :

To find the value of :

\frac{a + \sqrt{a^2-b^2} }{a - \sqrt{a^2-b^2}} +\frac{a - \sqrt{a^2-b^2} }{a + \sqrt{a^2-b^2}}

Solution :

\frac{a + \sqrt{a^2-b^2} }{a - \sqrt{a^2-b^2}} +\frac{a - \sqrt{a^2-b^2} }{a + \sqrt{a^2-b^2}}

By cross - multiplication :

\frac{(a + \sqrt{a^2-b^2})^2 + (a - \sqrt{a^2-b^2})^2 }{(a - \sqrt{a^2-b^2})(a + \sqrt{a^2-b^2})}

⇒  \frac{(a)^2 +2(a)(\sqrt{a^2-b^2})+ (\sqrt{a^2-b^2})^2 + (a)^2 - 2(a)(\sqrt{a^2-b^2})+(\sqrt{a^2-b^2})^2 }{(a)^2 - (\sqrt{a^2-b^2})^2}

\frac{2a^2 +2 (\sqrt{a^2-b^2})^2 }{a^2 - (\sqrt{a^2-b^2})^2}

\frac{2a^2 +2 (a^2-b^2) }{a^2 - (a^2-b^2)}

\frac{2a^2 +2a^2- 2b^2}{a^2 - a^2+b^2}

\frac{4a^2- 2b^2}{b^2}

\frac{2(2a^2- b^2)}{b^2}

__

Given :

If , f(x)=x^2-(\sqrt{5}-1)x - (\sqrt{5}+1)

Then find ,

\frac{1}{\alpha^2} + \frac{1}{\beta^2 }

Solution :

\frac{1}{\alpha^2} + \frac{1}{\beta^2 }

By cross-multiplication,.

\frac{\alpha^2 +\beta^2 }{\alpha^2\beta^2 }

\frac{(\alpha+\beta)^2 - 2\alpha \beta }{(\alpha \beta)^2}

__

We know that,

Sum of the roots = α + β = \frac{-b}{a} = \frac{-[-(\sqrt{5} - 1 )]}{1} = \sqrt{5} - 1

\alpha + \beta = \sqrt{5} - 1

Product of the roots = αβ = \frac{c}{a} = \frac{-(\sqrt{5} + 1 )}{1} = -\sqrt{5} - 1

\frac{(\alpha+\beta)^2 - 2\alpha \beta }{(\alpha \beta)^2}

\frac{(\sqrt{5} - 1)^2 - 2(-\sqrt{5} - 1) }{(-\sqrt{5} - 1)^2}

\frac{5 - 2\sqrt{5} + 1 + 2\sqrt{5} + 2 }{5 + 2\sqrt{5} + 1}

\frac{8}{6 + 2\sqrt{5}}

\frac{2(4)}{2(3 + \sqrt{5})}

\frac{4}{3 + \sqrt{5}}

By taking conjugate,

\frac{4}{3 + \sqrt{5}} \times \frac{3 - \sqrt{5}}{3 - \sqrt{5}} = \frac{4(3 - \sqrt{5})}{(3)^2 - (\sqrt{5})^2} = \frac{4(3 - \sqrt{5})}{9 - 5} = \frac{4(3 - \sqrt{5})}{4} = 3 - \sqrt{5}


sivaprasath: how much marks you got in class 10 (board) ?
seth87: i give three more question plz solve it
seth87: help me in this question
sivaprasath: ok
seth87: this question not
seth87: i give some new question
sivaprasath: Done
Similar questions