Math, asked by seth87, 1 year ago

how to solve ...........................................​

Attachments:

Answers

Answered by sivaprasath
0

Answer:

a =\frac{3\sqrt{5} - 5}{2}

Step-by-step explanation:

Given :

a=\frac{5}{5+\frac{5}{5+\frac{5}{5+\frac{5}{...\infty} } } }

Solution :

a=\frac{5}{5+\frac{5}{5+\frac{5}{5+\frac{5}{...\infty} } } }

\frac{a}{5} = \frac{1}{5+\frac{5}{5+\frac{5}{5+\frac{5}{...\infty} } } }

let  x = \frac{1}{5+\frac{5}{5+\frac{5}{5+\frac{5}{...\infty} } } }

\frac{a}{5} = x ....(1)

_

a+5=5+\frac{5}{5+\frac{5}{5+\frac{5}{5+\frac{5}{...\infty} } } }

a + 5 = 5+\frac{5}{\frac{5+\frac{5}{5+\frac{5}{5+\frac{5}{...\infty} } } }{1}}

a + 5= \frac{1}{x}

a + 5 = \frac{1}{(\frac{a}{5} )}

a + 5 = \frac{5}{a}

a^2 + 5a = 5

a^2 + 5a - 5 = 0

a^2 + (\frac{5 - 3\sqrt{5}}{2})a + (\frac{5 +3\sqrt{5} }{2})a - 5 = 0

a(a + \frac{5 - 3\sqrt{5}}{2}) + (\frac{5 +3\sqrt{5} }{2})((a + \frac{5 - 3\sqrt{5}}{2})) = 0

(a + \frac{5 - 3\sqrt{5}}{2})(a + \frac{5 + 3\sqrt{5}}{2}) = 0

⇒  (a + \frac{5 - 3\sqrt{5}}{2}) = 0

(or)

 (a + \frac{5 + 3\sqrt{5}}{2}) = 0

a = -\frac{5 - 3\sqrt{5} }{2} = \frac{3\sqrt{5} - 5}{2}

(or)

a = -\frac{5 + 3\sqrt{5} }{2} = \frac{- 5 -3\sqrt{5}}{2}


sivaprasath: Well, you marked his un-explained answer as Br,..
seth87: no
seth87: this is my mistake
sivaprasath: ya,.
seth87: then how to correct
seth87: to mark your answer
seth87: kk i give more question
sivaprasath: ok,.
seth87: help me
seth87: you can solve it this question which i give
Similar questions