Math, asked by darwintejdarwin217, 1 year ago

how to solve (a-b)x + (a+b)y = (a2-2ab-b2) , (a+b) (x+y)=a2+b2. by cross multiplication method

Answers

Answered by hukam0685
63

Step-by-step explanation:

Cross multiplication method of Solution of two linear equation

a_1x + b_1y + c_1 = 0 \\  \\ a_2x + b_2y + c_2 = 0 \\  \\  \frac{x}{b_1c_2 - b_2c_1}  =  \frac{y}{a_2c_1 - a_1c_2}  =  \frac{1}{a_1b_2 - a_2b_1}  \\  \\

(a-b)x + (a+b)y  -  ( {a}^{2} -2ab- {b}^{2} ) = 0  \\  \\ (a+b)x+(a + b)y -  {a}^{2}  -  {b}^{2}  = 0 \\  \\  \frac{x}{(a + b)( -  {a}^{2} -  {b}^{2} ) - (a + b)( -( {a}^{2} -2ab- {b}^{2} )   }  \\  \\  =  \frac{y}{-  ( {a}^{2} -2ab- {b}^{2} ) (a + b) - ( -  {a}^{2} -  {b}^{2} )(a + b) }  =  \frac{1}{(a - b)(a + b) - (a + b)(a + b)}  \\  \\  \frac{x}{ -  {a}^{3} - a {b}^{2}   -  {a}^{2}b -  {b}^{3} +  {a}^{3}  - 2 {a}^{2} b - a {b}^{2}  +  {a}^{2}b - 2a {b}^{2}   -  {b}^{3} }  =  \frac{y}{ -  {a}^{3} -  {a}^{2}b + 2 {a}^{2}b + 2a {b}^{2}   + a {b}^{2}  +  {b}^{3} +  {a}^{3}  +  {a}^{2} b + a {b}^{2} +  {b}^{3}     }  =  \frac{1}{ {a}^{2}  -  {b}^{2} -  {a}^{2}  -  {b}^{2}   - 2ab}  \\  \\  \frac{x}{ - 4a {b}^{2} - 3 {a}^{2} b -  2{b}^{3}  }  =  \frac{y}{3 {a}^{2}b + 4a {b}^{2}  + 2 {b}^{3}  }  =  \frac{1}{ - 2 {b}^{2}  - 2ab}  \\  \\ \frac{x}{ - 4a {b}^{2} - 3 {a}^{2} b -  2{b}^{3}  } = \frac{1}{ - 2 {b}^{2}  - 2ab} \\  \\ x =  \frac{(a+b)( - 2 {b}^{2}  - 2ab) }{- 2 {b}^{2}  - 2ab}  \\  \\ x =  a+b  \\  \\ \frac{y}{3 {a}^{2}b + 4a {b}^{2}  + 2 {b}^{3}  } = \frac{1}{ - 2 {b}^{2}  - 2ab}  \\  \\ y =  \frac{3 {a}^{2}b + 4a {b}^{2}  + 2 {b}^{3} }{- 2 {b}^{2}  - 2ab}  \\  \\ y =  \frac{-2ab  }{ (b + a)}  \\  \\

Hope it helps you.

Answered by pritimohite286
1

Step-by-step explanation:

Cross multiplication method of Solution of two linear equation

\begin{gathered}a_1x + b_1y + c_1 = 0 \\ \\ a_2x + b_2y + c_2 = 0 \\ \\ \frac{x}{b_1c_2 - b_2c_1} = \frac{y}{a_2c_1 - a_1c_2} = \frac{1}{a_1b_2 - a_2b_1} \\ \\\end{gathered}

a

1

x+b

1

y+c

1

=0

a

2

x+b

2

y+c

2

=0

b

1

c

2

−b

2

c

1

x

=

a

2

c

1

−a

1

c

2

y

=

a

1

b

2

−a

2

b

1

1

Similar questions