Math, asked by GoutamArya50, 1 year ago

How to solve a cubic equation algebraically?

Answers

Answered by shanuraj1
0
formulae ax³+bx2+cx+d=0
Answered by SrijanShrivastava
1

 \sf f(x) = a {x}^{3}  + b {x}^{2}  + cx + d = 0

The algebraic solution for this cubic must be a trinomial.

The solutions are:

x_{1,2,3} =  -  \frac{b}{3a}  +  \omega_{k}  \sqrt[3]{ \frac{9abc - 2 {b}^{3} - 27 {a}^{2}d}{54 {a}^{3} } +  \sqrt{ {(\frac{9abc - 2 {b}^{3} - 27 {a}^{2}d}{54 {a}^{3}} )}^{2} +  {( \frac{ 3ac - {b}^{2} }{9 {a}^{2} } }  )  ^{3} }  }  + \omega_{k}  {}^{2}  \sqrt[3]{ \frac{9abc - 2 {b}^{3} - 27 {a}^{2}d}{54 {a}^{3} }  -  \sqrt{ {(\frac{9abc - 2 {b}^{3} - 27 {a}^{2}d}{54 {a}^{3}} )}^{2} +  {( \frac{ 3ac - {b}^{2} }{9 {a}^{2} } }  )  ^{3} }  }

One of the simplest Method of solving this cubic is:

So,

 \sf  \frac{d ^{2} }{ {dx}^{2} } f(x) = 6ax + 2b = 0

 \sf \implies x =  -  \frac{  b}{3a}

Hence, performing a shift of the inflection point

 \sf  {x}^{3}  +  \frac{b}{a}  {x}^{2}  +  \frac{c}{a} x +  \frac{d}{a}  = 0

 \sf(({x +  \frac{b}{3a} ) -  \frac{b}{3a} ) }^{3}  +  \frac{b}{a}   ((x +  \frac{b}{3a} ) -  \frac{b}{3a} )^{2}  +  \frac{c}{a} ((x +  \frac{ b}{3a} ) -  \frac{b}{3a} ) +  \frac{d}{a}  = 0

 \sf(x +  \frac{b}{3a} ) {}^{3}  + ( \frac{3ac -  {b}^{2} }{9 {a}^{2} } )(x +  \frac{b}{3a} ) + ( \frac{2 {b}^{3} - 9abc + 27 {a}^{2}  d}{27 {a}^{3} } ) = 0

Letting,

y = x +  \frac{b}{3a}  \\ \\ p =  \frac{3ac -  {b}^{2} }{9 {a}^{2} }  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  q =  \frac{2 {b}^{3}  - 9abc + 27 {a}^{2} d}{27 {a}^{3} }

This reduces us to solve a much simpler cubic equation

 \sf f(y) =  {y}^{3}  + py + q = 0

Now, the solution for y due to transformation reduces to a binomial.

Let, the solution be :

 \sf y = u + v

 \sf \therefore  {(u + v)}^{ 3}  + p(u + v)   + q = 0

 \sf( {u}^{3}  +  {v}^{3}  + q) + (u + v)(3uv + p) =

Therefore, Only Simultaneously:

uv =  -  \frac{p}{3} ⇔u =  -  \frac{p}{3}

 {u}^{3}  +  {v}^{3}  + q = 0

 \implies  {v}^{3}  + ( \frac{ - p}{3v} )^{3}  + q = 0

 {v}^{6}  + q {v}^{3}  -  {( \frac{p}{3}) }^{3}  = 0

Solving using the quadratic formula:

 {v}^{3}  =  -  \frac{q}{2}  \pm \sqrt{( \frac{ q}{2} ) ^{2} + ( \frac{p}{3}  ) ^{3} }

But, as u and v are indistinguishable, Therefore:

 {u}^{3}  =  -  \frac{q}{2}   +  \sqrt{( \frac{ q}{2} ) ^{2} + ( \frac{p}{3}  ) ^{3} }

 {v}^{3}  =  -  \frac{q}{2}   -  \sqrt{( \frac{ q}{2} ) ^{2} + ( \frac{p}{3}  ) ^{3} }

Hence,

u =  \omega _{k} \sqrt[3]{ -  \frac{q}{2} +  \sqrt{( \frac{q}{2}) {}^{2}   +  {( \frac{p}{3} )}^{3} }  }

v =  \omega _{k} {}^{2} \sqrt[3]{ -  \frac{q}{2}  -  \sqrt{( \frac{q}{2}) {}^{2}   +  {( \frac{p}{3} )}^{3} }  }

Thus, the Three solutions of f(y) are:

 \sf y_1 =\sqrt[3]{ -  \frac{q}{2} +  \sqrt{( \frac{q}{2}) {}^{2}   +  {( \frac{p}{3} )}^{3} }  } +\sqrt[3]{ -  \frac{q}{2}  -  \sqrt{( \frac{q}{2}) {}^{2}   +  {( \frac{p}{3} )}^{3} }  }

 \sf y_{2} =  \sqrt[3]{ -  \frac{q}{16} +  \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  } +  \sqrt[3]{ -  \frac{q}{16}  -  \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  } +  \sqrt{3} i( \sqrt[3]{  \frac{q}{16} +  \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  } -  \sqrt[3]{ \frac{q}{16}  -   \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  })

 \sf y_{3} =  \sqrt[3]{ -  \frac{q}{16} +  \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  } +  \sqrt[3]{ -  \frac{q}{16}  -  \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  }  -   \sqrt{3} i( \sqrt[3]{  \frac{q}{16} +  \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  } -  \sqrt[3]{  \frac{q}{16}  -   \sqrt{( \frac{q}{16}) {}^{2}   +  {( \frac{p}{12} )}^{3} }  })

And Now, we can solve for x

swipe to see the full length answer→→→

thank you

:)

Similar questions