Math, asked by sovi7390, 1 year ago

How to solve ab(a2+b2-c2)-bc(c2- a2-b2)+ca(a2+b2-c2) to factorise by taking out common factors

Answers

Answered by Agastya0606
12

Given: The expression: ab(a^2+b^2-c^2)-bc(c^2- a^2-b^2)+ca(a^2+b^2-c^2)

To find: factorize by taking out common factors?

Solution:

  • Now we have given the equation as:

                 ab(a^2+b^2-c^2)-bc(c^2- a^2-b^2)+ca(a^2+b^2-c^2)

  • Now simplifying it, we get:

                 ab ( a^2 + b^2 - c^2 ) + bc ( -c^2 + a^2 + b^2 ) + ca ( a^2 + b^2 - c^2 )

  • Now as we can see all the brackets are same, so taking it common, we get:

                 ( a^2 + b^2 - c^2 ) (ab + bc + ac)

Answer:

                 So after factorization, the answer comes out to be ( a^2 + b^2 - c^2 ) (ab + bc + ac)

Answered by srarchana
3

answer:(a2 + b2 - c2) [ab + bc + ca]

explanation :ab(a2+ b2- c2) + bc( a2+ b2- c2) + ca( a2+ b2- c2)(a2+b2- c2)[ab+ bc+ca]

hope it is helpful

Similar questions