how to solve for x if Sin(x-20)= Cos(3x+10)
Answers
Answered by
0
Step-by-step explanation:
sin(x−20
∘
)=cos(3x−10
∘
)
⇒sin(x−20
∘
)=sin(90
∘
−(3x−10
∘
)) since sin(90
∘
−θ)=cosθ
⇒x−20
∘
=90
∘
−(3x−10
∘
)
⇒x−20
∘
=90
∘
−3x+10
∘
⇒x+3x=100
∘
+20
∘
=120
∘
⇒4x=120
∘
∴x=
4
120
∘
=30
∘
Answered by
9
Given:
- sin(x - 20) = cos(3x + 10)
To Find:
- Value of x
Solution:
⇒ sin(x - 20) = cos(3x + 10)
We know that,
cos(a) = sin(90-a)
⇒ sin(x - 20) = sin(90 - (3x + 10))
⇒ sin(x - 20) = sin(90 - 3x - 10)
⇒ sin(x - 20) = sin(80 - 3x)
So,
⇒ x - 20 = 80 - 3x
⇒ x + 3x = 80 + 20
⇒ 4x = 100
⇒ x = 25
Similar questions
Math,
29 days ago
Computer Science,
29 days ago
Math,
1 month ago
Math,
1 month ago
Physics,
8 months ago
Psychology,
8 months ago