Math, asked by hd085348, 1 month ago

how to solve for x if Sin(x-20)= Cos(3x+10)

Answers

Answered by ghanistagrawal
0

Step-by-step explanation:

sin(x−20

)=cos(3x−10

)

⇒sin(x−20

)=sin(90

−(3x−10

)) since sin(90

−θ)=cosθ

⇒x−20

=90

−(3x−10

)

⇒x−20

=90

−3x+10

⇒x+3x=100

+20

=120

⇒4x=120

∴x=

4

120

=30

Answered by MrImpeccable
9

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

Given:

  • sin(x - 20) = cos(3x + 10)

To Find:

  • Value of x

Solution:

⇒ sin(x - 20) = cos(3x + 10)

We know that,

cos(a) = sin(90-a)

⇒ sin(x - 20) = sin(90 - (3x + 10))

⇒ sin(x - 20) = sin(90 - 3x - 10)

⇒ sin(x - 20) = sin(80 - 3x)

So,

⇒ x - 20 = 80 - 3x

⇒ x + 3x = 80 + 20

⇒ 4x = 100

⇒ x = 25

Similar questions