Math, asked by sateesh953, 4 days ago

How to solve ∫ ln(x!) dx lower bound 0 and upper bond 1?​

Answers

Answered by Anonymous
12

We have to evaluate the integral:

  I = \int \limits_0^1 \ln(x!)dx

We know that:

  • x! =  \Gamma(x + 1)
  •  \Gamma(x+1) = x \cdot \Gamma(x)

Therefore, the given integral is equal to:

 { I= \int \limits_0^1 \ln(\Gamma(x+1)) dx}

 { I= \int \limits_0^1 \ln(x \cdot\Gamma x) dx}

Now make use of logarithmic property:

  •  \ln(x\cdot y) = \ln(x) + \ln(y)

{  I= \int \limits_0^1 \ln(x) +  \ln(\Gamma x) dx}

{   I= \int \limits_0^1 \ln(x) dx + \int\limits_0^1  \ln(\Gamma x) dx}

Now, value of  \int\limits_0^1 \ln(x) dx = -1. You may refer to the solution on this línk in case you are wondering: (brainly.in/question/47449571).

 I=  - 1 + \int\limits_0^1  \ln(\Gamma x) dx

(Say it equation 1)

Also we know that,

  •  \int \limits_a^bf(x)dx =   \int \limits_a^bf(a + b - x)dx

Therefore,

 \int\limits_0^1\ln(\Gamma(x) dx = \int\limits_0^1 \ln(1-x) dx

. . . and as a result, equation 1 now becomes:

 I=  - 1 + \int\limits_0^1  \ln(\Gamma( 1 - x)) dx

(Say it equation 2)

Adding equation 1 and 2 and dividing by 2, we get:

{ I=  - 1 +  \dfrac12\int\limits_0^1  \ln(\Gamma( 1 - x)) dx + \dfrac12\int\limits_0^1  \ln(\Gamma x) dx  }

{ I=  - 1 +  \dfrac12\left[ \int\limits_0^1  \ln(\Gamma( 1 - x)) + \ln(\Gamma x) dx\right]  }

{ I=  - 1 +  \dfrac12\left[ \int\limits_0^1  \ln(\Gamma x \cdot\Gamma( 1 - x)) dx\right] }

Now, for 0 < x < 1, we have a formula called Euler's Reflection Formula according to which,  \Gamma x \cdot \Gamma(1-x) = \dfrac{\pi}{\sin x\pi}.

By using this, our integral changes to:

{ I=  - 1 +  \dfrac12\left[ \int\limits_0^1  \ln\left[  \dfrac{\pi}{ \sin x\pi} \right] dx\right] }

{ I=  - 1 +  \dfrac12\left[ \int\limits_0^1  \ln \pi -  \ln(\sin x\pi) dx\right] }

{ I=  - 1 +  \dfrac12 \int\limits_0^1  \ln \pi dx -    \dfrac12\int\limits_0^1 \ln(\sin x\pi) dx }

{ I=  - 1 +  \dfrac{ \ln \pi}2 -    \dfrac12\int\limits_0^1 \ln(\sin x\pi) dx }

For the integral  \int\limits_0^1 \ln(\sin \pi x) dx, substitute  t = \pi x. This implies that  dx = \dfrac{dt}{\pi}.

 \displaystyle{ I=  - 1 +  \dfrac{ \ln \pi}2 -    \dfrac12\int\limits_0^ \pi  \dfrac{\ln(\sin t)}{ \pi} dt }

 \displaystyle{ I=  - 1 +  \dfrac{ \ln \pi}2 -    \dfrac1{2  \pi}\int\limits_0^ \pi  \ln(\sin t) dt }

Now,  \int\limits_0^\pi \ln(\sin t)dt = (-\pi \log 2).

(Proof for this is very lengthy, better to learn the formula as it is.)

 \displaystyle{ I=  - 1 +  \dfrac{ \ln \pi}2 -    \dfrac1{2  \pi}( - \pi \ln 2) }

 \displaystyle{ I=  - 1 +  \dfrac{ \ln \pi}2  +  \dfrac{\ln 2}{2} }

 \displaystyle{ I=  - 1 +  \ln   \sqrt{\pi} + \ln  \sqrt{2}  }

 \displaystyle{ I=  - 1 +  \ln   \sqrt{2\pi} }

So our final answer is:

 \underline{ \boxed{ \int \limits_0^1 \ln(x!)dx  = \ln   \sqrt{2\pi} - 1} }

Similar questions