Math, asked by ushausharani627, 11 months ago

How to solve log8+3√7 base of 8-3√7

Answers

Answered by Anonymous
5

Answer:

- 1

Step-by-step explanation:

 \sf log_{(8 - 3 \sqrt{7} )}8 + 3 \sqrt{7}  \\

  \Rightarrow  \sf log_{(8 - 3 \sqrt{7} )}8 + 3 \sqrt{7}  \\

Multiplying and dividind 8 + 3√7 by 8 - 3√3

  \Rightarrow  \sf log_{(8 - 3 \sqrt{7} )} \dfrac{(8 + 3 \sqrt{7})(8 - 3 \sqrt{7)}  }{8 - 3 \sqrt{7} } \\

  \Rightarrow  \sf log_{(8 - 3 \sqrt{7} )} \dfrac{ {8}^{2}  - (3 \sqrt{7}  )^{2} }{8 - 3 \sqrt{7} } \\

  \Rightarrow  \sf log_{(8 - 3 \sqrt{7} )} \dfrac{ 64- 63 }{8 - 3 \sqrt{7} } \\

  \Rightarrow  \sf log_{(8 - 3 \sqrt{7} )} \dfrac{ 1 }{(8 - 3 \sqrt{7})^{1}  } \\

  \Rightarrow  \sf log_{(8 - 3 \sqrt{7} )} (8 - 3 \sqrt{7})^{ - 1} \\

 \Rightarrow  \sf  - 1 \times log_{(8 - 3 \sqrt{7} )} (8 - 3 \sqrt{7}) \\

 \Rightarrow  \sf  - 1

Similar questions