how to solve p^2q^2+3pqx+2x^2by completing the square method
Answers
Answered by
2
Hi ,
2x² + 3pqx + p² q² = 0
divide each term with 2 , we get
x² + 3/2 pqx + p² q²/2 = 0
x²+2× x ×(3pq/4)+(3pq/4)² = (- p²q²/2 )+(3pq/4)²
( x + 3pq/4 )² = (- p² q² )/4 + ( 9p²q² ) / 16
= ( - 4p²q² + 9p²q² ) / 16
= ( 5p²q² ) / 16
Therefore ,
x + 3pq / 4 = ± √[ 5p²q² / 16 ]
= ± ( pq / 4 )√5
x = [ ( -3pq ± √5 pq )] / 4
x = ( pq / 4 ) [ -3 ± √5 ]
I hope this helps you.
:)
2x² + 3pqx + p² q² = 0
divide each term with 2 , we get
x² + 3/2 pqx + p² q²/2 = 0
x²+2× x ×(3pq/4)+(3pq/4)² = (- p²q²/2 )+(3pq/4)²
( x + 3pq/4 )² = (- p² q² )/4 + ( 9p²q² ) / 16
= ( - 4p²q² + 9p²q² ) / 16
= ( 5p²q² ) / 16
Therefore ,
x + 3pq / 4 = ± √[ 5p²q² / 16 ]
= ± ( pq / 4 )√5
x = [ ( -3pq ± √5 pq )] / 4
x = ( pq / 4 ) [ -3 ± √5 ]
I hope this helps you.
:)
mysticd:
press red heart
Similar questions