Math, asked by XxDARKxxKNIGHTxX, 5 hours ago

How to solve
Please tell​

Attachments:

Answers

Answered by VishnuPriya2801
4

Answer:-

We have to prove:-

 \sf \:  \frac{1}{ \sqrt{2}  -  \sqrt{3}  -  \sqrt{5} }  +  \frac{1}{ \sqrt{2} +  \sqrt{3}  - 5 }  =  \frac{1}{ \sqrt{2} }  \\  \\  \\  \implies \sf \:  \frac{1}{ \sqrt{2}  -  \sqrt{5}  -  \sqrt{3} }  +  \frac{1}{ \sqrt{2} -  \sqrt{5}  + 3 }  =   \frac{1}{ \sqrt{2} }

Taking LCM in LHS we get,

 \implies \sf \:  \dfrac{ \sqrt{2} -  \sqrt{5}   +  \sqrt{3} +  \sqrt{2}   -  \sqrt{5}  -  \sqrt{3} }{( \sqrt{2}  -  \sqrt{5}  -  \sqrt{3})( \sqrt{2}  -  \sqrt{5}   + 3)}  =  \dfrac{1}{ \sqrt{2} }

Using (a + b)(a - b) = - in LHS we get,

 \implies \sf \:  \dfrac{2 \sqrt{2}  - 2 \sqrt{5} }{( \sqrt{2}  -  \sqrt{5})  ^{2}    -  {( \sqrt{3}) }^{2} }  =  \dfrac{1}{ \sqrt{2} }

Using (a - b)² = + - 2ab in LHS we get,

 \implies \sf \:  \frac{2( \sqrt{2}  -  \sqrt{5}  )}{ {( \sqrt{2}) }^{2} +  {( \sqrt{5}) }^{2}  - 2 \times  \sqrt{2}  \times  \sqrt{5}   - 3 }  =  \frac{1}{ \sqrt{2} }  \\  \\  \\ \implies \sf \: \frac{2( \sqrt{2} -  \sqrt{5})  }{2 + 5 - 3 - 2 \times  \sqrt{2 }  \times  \sqrt{5} }  =  \frac{1}{ \sqrt{2} }  \\  \\  \\ \implies \sf \: \frac{2( \sqrt{2}  -  \sqrt{5} )}{4 - 2 \times  \sqrt{2}  \times  \sqrt{5}  }  =  \frac{1}{ \sqrt{2} }  \\  \\  \\ \implies \sf \: \frac{2( \sqrt{2} -  \sqrt{5}  )}{2 \times  \sqrt{2}  \times  \sqrt{2}  - 2 \times  \sqrt{2}  \times  \sqrt{5} }  =  \frac{1}{ \sqrt{2} }  \\  \\  \\ \implies \sf \: \frac{ \cancel{2( \sqrt{2} -  \sqrt{5}  )}}{ \cancel2 \times  \sqrt{2} \cancel{ ( \sqrt{2}  -  \sqrt{5}) }}  =  \frac{1}{ \sqrt{2} }  \\  \\  \\ \implies \sf \: \frac{1}{ \sqrt{2} }  =  \frac{1}{ \sqrt{2} }

Hence, Proved.

Similar questions