Physics, asked by diva2016, 2 months ago

how to solve pls give a written solution pls​

Attachments:

Answers

Answered by Sauron
8

Answer:

The equivalent resistance is 6 Ω.

Step-by-step explanation:

According to the given diagram:

  • \sf{R_1} = 60 Ω
  • \sf{R_2} = 15 Ω
  • \sf{R_3} = 5 Ω
  • \sf{R_4} = 10 Ω

The resistors \sf{R_2} and \sf{R_3} are in series,

\longrightarrow \: \sf{R_s} = R_2 + R_3

\longrightarrow \: \sf{R_s} = 15+ 5

\longrightarrow \: \sf{R_s} =20 \:ohms

Replace the 15 Ω and 5 Ω with 20 Ω resistor.

__________________

The resistors \sf{R_1}, \sf{R_{2,3}} and \sf{R_4} are in parallel connection.

\sf{\longrightarrow} \:  \dfrac{1}{R_P} = \dfrac{1}{R_1}  + \dfrac{1}{R_{2,3}} +  \dfrac{1}{R_4}

\sf{\longrightarrow} \:  \dfrac{1}{R_P} = \dfrac{1}{60}  + \dfrac{1}{20} +  \dfrac{1}{10}

\sf{\longrightarrow} \:  \dfrac{1}{R_P} = \dfrac{1 + 3  + 6}{60}

\sf{\longrightarrow} \:  \dfrac{1}{R_P} = \dfrac{10}{60}

\sf{\longrightarrow} \:  \dfrac{1}{R_P} = \dfrac{1}{6}

\sf{\longrightarrow} \:  R_P =6 \: ohms

Equivalent Resistance = 6 Ω

Therefore, the equivalent resistance is 6 Ω.

Similar questions