How to solve Prove Trigonometry Questions?
Example Question:-
(1 - sin A)/(1 + sin A) = (sec A - tan A)2
Please give answer maths experts
Answers
Answered by
16
Step-by-step explanation:
Given :-
(1 - sin A)/(1 + sin A)
To find :-
Prove that :(1 - sin A)/(1 + sin A) = (sec A - tan A)²
Solution :-
On taking LHS :
(1 - sin A)/(1 + sin A)
On multiplying both the numerator and the denominator with (1-Sin A) then
=>[(1 - sin A)/(1 + sin A)]×[(1 - sin A)/(1 - sin A)]
=> [(1 - sin A)(1 - sin A)]/ [(1 +sin A)(1 - sin A)]
=> (1 - sin A)²/ [(1 +sin A)(1 - sin A)]
=> (1 - sin A)²/ (1²-sin² A)
Since (a+b)(a-b) = a²-b²
Where, a = 1 and b = Sin A
=> (1 - sin A)²/ (1-sin² A)
We know that
Sin² A + Cos² A = 1
=>(1 - sin A)²/ Cos² A
=> [(1-Sin A)/Cos A]²
=> [(1/Cos A) -(Sin A/Cos A)]²
=> (Sec A - Tan A)²
=> RHS
=> LHS = RHS
Hence, Proved.
Answer:-
(1 - sin A)/(1 + sin A) = (sec A - tan A)²
Used formulae:-
→ (a+b)(a-b) = a²-b²
→ Sin² A + Cos² A = 1
→ Sec A = 1/Cos A
→ Tan A = Sin A / Cos A
Similar questions