Math, asked by SumedhaPant, 2 months ago

How to solve questions of type :-
If x = 2+√3, find the value of x² + 1/x².
Please give step by step explanation. ​

Attachments:

Answers

Answered by akeertana503
32

\Huge{\textbf{\textsf{\color{navy}{An}{\purple{sW}{\pink{eR{\color{pink}{:-}}}}}}}}

Please the attachment

hope it's helpful⭐✨..☻

\huge\sf\underline\red{answered\:by\:KIMU}

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x = 2 +  \sqrt{3}

Consider,

\rm :\longmapsto\:\dfrac{1}{x}

\rm \:  =  \:  \: \dfrac{1}{2 +  \sqrt{3} }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

We know,

\boxed{ \rm \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}

using this identity, we get

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3} )}^{2} }

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{1}

\rm \:  =  \:  \: 2 -  \sqrt{3}

\bf\implies \:\dfrac{1}{x} =  \:  \: 2 -  \sqrt{3}

Hence,

\rm :\longmapsto\:x + \dfrac{1}{x}

\rm \:  =  \:  \: 2 +  \sqrt{3} + 2 -  \sqrt{3}

\rm \:  =  \:  \: 4

So,

\rm :\implies\:x + \dfrac{1}{x} = 4

On squaring both sides, we get

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  + 2 \times x \times \dfrac{1}{x} = 16

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  + 2  = 16

\rm :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  = 16 - 2

\bf :\longmapsto\: {x}^{2} + \dfrac{1}{ {x}^{2} }  = 14

Additional Information :-

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions