Math, asked by sdadagg9613, 10 months ago

How to solve tan^-1(1/cos2x-sin2x/cos2x)

Answers

Answered by rishu6845
5

Answer:

\boxed{\huge{ \dfrac{\pi}{4}  - x}}

Step-by-step explanation:

\bold{To \: find}\longrightarrow  \\ \: value \: of \\  {tan}^{ - 1} ( \:  \dfrac{1}{cos2x}  -  \dfrac{sin2x}{cos2x}  \: )

\bold{Concept \: used}\longrightarrow \\  \\1) sin \alpha  = cos( \dfrac{\pi}{2}  -  \alpha ) \\2) cos \alpha  = sin( \dfrac{\pi}{2}  -  \alpha ) \\ 3)1 - cos \alpha  = 2 {sin}^{2}  \dfrac{ \alpha }{2}  \\ 4)sin2 \alpha  = 2 \: sin \alpha  \: cos \alpha  \\ 4) \dfrac{sin \alpha }{cos \alpha }  = tan \alpha

\bold{Solution}\longrightarrow \\  {tan}^{ - 1} ( \:  \dfrac{1}{cos2x}  -  \dfrac{sin2x}{cos2x} \:  )

 =  {tan}^{ - 1}  \dfrac{1 - sin2 x}{cos2x}

 =  {tan}^{ - 1} \:  \: (   \: \dfrac{1 - cos( \dfrac{\pi}{2} - 2x) }{sin( \dfrac{\pi}{2}  - 2x)} \:  )

 =  {tan}^{  - 1}  \dfrac{2 {sin}^{2} \dfrac{1}{2} ( \dfrac{\pi}{2}  - 2x) }{2 \: sin \dfrac{1}{2}( \dfrac{\pi}{2}   -2 x) \:  \: cos \dfrac{1}{2}( \dfrac{\pi}{2} - 2x)  }

 {tan}^{ - 1}  \dfrac{sin( \dfrac{\pi}{4} - x) }{cos( \dfrac{\pi}{4} - x) }

 =  {tan}^{ - 1} tan(\dfrac{\pi}{4}  - x)

 =  \dfrac{\pi}{4}  - x

Similar questions