Math, asked by NIHARd, 1 year ago

how to solve the above sum

Attachments:

Answers

Answered by Skidrow
9

lim _{x -  > 0} \:   \:  \: \frac{ \sqrt{x + 2} -  \sqrt{2}  }{x}  \\ put \:  x \:  = 0 \\ we \: get \: a \: \:  \:   \frac{0}{0}  \: form \:...hence \: we \: need \: to \: simplify \: it \:  \\  \\ multiply \: both \: numerator \: and \:  \:  Denominator \: by \: ( \sqrt{x + 2}  +  \sqrt{2} ) \\  =  > lim _{x -  > 0} \:   \:  \: \frac{ (\sqrt{x + 2} -  \sqrt{2} \times) \times (  \sqrt{x + 2}  +   \sqrt{2})}{x \times ( \sqrt{x + 2}  +   \sqrt{2}) \: }  \\  = lim _{x -  > 0} \:   \:  \:  \frac{1}{ \sqrt{x + 2} +  \sqrt{2}  }  \\ put \: x \:  = 0 \: \\  =  > lim _{x -  > 0} \:   \:  \: \frac{ \sqrt{x + 2} -  \sqrt{2}  }{x} \:  =  \frac{1}{2 \sqrt{2} }
Similar questions