Math, asked by shikhauppal2021, 20 days ago

how to solve the following quadratic equations
4 {x}^{2}  - 4 {a}^{2} x +    {a}^{4}  -  {b}^{4}

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: solve \: for :   value(s) \: of \: x \\  \\ given \: quadratic \: equation \: is \\ 4x {}^{2}  - 4a {}^{2} x + a {}^{4}  - b {}^{4}  = 0 \\  4x {}^{2}  - 2.2a {}^{2} x + a {}^{4}  = b {}^{4}  \\ (2x) {}^{2}  - 2x.2a {}^{2}  +( a {}^{2} ) {}^{2}  = b {}^{4}  \\ (2x - a {}^{2} ) {}^{2}  =( b {}^{2} ) {}^{2}  \\  \\ taking \: square \: roots \: on \: both \: sides \\ we \: obtain \\  \\ (2x - a {}^{2} ) = ± \: b {}^{2}  \\  \\ 2x - a {}^{2}  = b {}^{2}  \:  \: or \:  \: 2x - a {}^{2}  =  -b {}^{2}  \\  \\ 2x = a {}^{2}  + b {}^{2}  \:  \: or \:  \: 2x = a {}^{2}  - b {}^{2}  \\   \\ x =  \frac{a {}^{2} + b {}^{2}  }{2}  \:  \: or \:  \: x =  \frac{a {}^{2}  - b {}^{2} }{2}

Similar questions