Physics, asked by varunvbhat26, 9 months ago

How to solve these questions?

Attachments:

Answers

Answered by shadowsabers03
6

(i) We know the displacement of a velocity - time graph is given by the area under the graph.

So the displacement for OA is equal to the area under the portion OA (that leftmost triangle).

\sf{\longrightarrow OA=\dfrac{1}{2}(10-0)(20-0)\ m}

\sf{\longrightarrow\underline{\underline{OA=100\ m}}}

The displacement for AB is equal to the area under the portion AB (that middle rectangle).

\sf{\longrightarrow AB=(20-10)(20-0)\ m}

\sf{\longrightarrow\underline{\underline{AB=200\ m}}}

And the displacement for BC is equal to the area under the portion AB (that rightmost triangle).

\sf{\longrightarrow BC=\dfrac{1}{2}(25-20)(20-0)\ m}

\sf{\longrightarrow\underline{\underline{BC=50\ m}}}

(ii) We know acceleration of a velocity - time graph at a particular interval is given by the slope of the graph in that interval.

Let us write coordinates for each point in the graph.

\sf{\longrightarrow O=(0,\ 0)}

\sf{\longrightarrow A=(10,\ 20)}

\sf{\longrightarrow B=(20,\ 20)}

\sf{\longrightarrow C=(25,\ 0)}

Then, acceleration during OA,

\sf{\longrightarrow OA=\dfrac{20-0}{10-0}}

\sf{\longrightarrow \underline{\underline{OA=2}}}

Acceleration during AB,

\sf{\longrightarrow AB=\dfrac{20-20}{20-10}}

\sf{\longrightarrow\underline{\underline{AB=0}}}

Acceleration during BC,

\sf{\longrightarrow AB=\dfrac{0-20}{25-20}}

\sf{\longrightarrow\underline{\underline{AB=-4}}}

(iii) Average velocity is equal to the total displacement divided by total interval of time.

Total displacement \sf{=100+200+50=350\ m.}

Total time \sf{=25\ s.}

Then, average velocity,

\sf{\longrightarrow v_{av}=\dfrac{350\ m}{25\ s}}

\sf{\longrightarrow\underline{\underline{v_{av}=14\ m\,s^{-1}}}}

(iv) Maximum velocity is the maximum possible value of velocity (y value) through which the graph passes.

Here we see the maximum value of velocity is \sf{20\ m\,s^{-1}.}

\sf{\longrightarrow\underline{\underline{v_{max}=20\ m\,s^{-1}}}}

Similar questions