Math, asked by piyush12206, 6 days ago

How to solve these type questions​

Attachments:

Answers

Answered by jitendra12iitg
3

Answer:

The answer is 7

Step-by-step explanation:

Let  \text{S}_n=1+3+3^2+3^3+...3^{n-1}

           \displaystyle =\frac{1(3^n-1)}{3-1}, using sum of GP formula

            \displaystyle =\frac{3^n-1}{2}

Given  \text{S}_n>1000

          \displaystyle \Rightarrow \frac{3^n-1}{2}>1000\\\\\Rightarrow 3^n>2001

Also we know 3^6=729,3^7=2187

So the least value of n is 7

Answered by Anonymous
7

Answer:

  • 7

Step-by-step explanation;

Given series is,

{ \small \longrightarrow  \underbrace{1 + 3 +  {3}^{2}  +  {3}^{3}  + ... +  {3}^{n - 1} }_{ \sf Finite\, GP\, with\, a=1\, and \,r=3} > 1000}

We have formula to find sum of n terms in a GP:

  •  \boxed{S_n = \dfrac{a(r^n-1)}{r-1}}

By using this formula, we get:

{ \small \longrightarrow   \dfrac{(1)( {3}^{n} - 1) }{3 - 1}  > 1000}

 { \small \longrightarrow   \dfrac{( {3}^{n} - 1) }{2}  > 1000}

 { \small \longrightarrow  ( {3}^{n} - 1)   > 2000}

 { \small \longrightarrow   {3}^{n}  > 2001}

Now, the smallest multiple of 3 exactly greater than 2001 is 2187 which is 3⁷. Therefore, the required value of n is 7.

Similar questions