Math, asked by pranitha2024, 7 months ago

how to solve this.......​

Attachments:

Answers

Answered by TheFairyTale
7

AnswEr :-

  • → 4 cm

GiVEn :-

  • In a circle, the length of chord is 6 cm
  • The radius is 5 cm

To Find :-

  • The distance from the centre of the circle to the chord

Diagram :-

 \setlength{\unitlength}{1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\qbezier(6,25)(10,25)(44,25)\qbezier(5,25)(5,25)(30,45)\qbezier(30,45)(30,45)(30,25)\put(5.2, 25){\circle*{1}} \put(44.8, 25){\circle*{1}}\put(30, 45.2){\circle*{2}}\put(26 ,45){$\sf O$}\put(14,40){$ \textsf{\textbf{ 5 cm}}$}\put(14 ,21){$\textsf{ \textbf{ 3 cm }}$}\put(2 ,25){$\sf A$}}\put(45.5 ,25){$\sf B$}\put(28.5 ,21){$\sf P$}\put(28,25){\dashbox{0.01}(2,2)}\end{picture}

Solution :-

→ Let the centre of the circle be O

→ And the distance of the chord to the centre is OP

→ Now, the chord, AB = 6 cm and the radius, OA = 5 cm

→ We know the theorem,

★ The perpendicular from the centre of a circle to a chord bisects the chord.

→ Therefore, AP = PB = 3 cm

→ As OP is perpendicular upon AB,

∠OPA = 90°

→ Therefore,

 \sf \triangle \: OAP \: is \: right \: angle \: triangle

In a right angle triangle,

 \implies \boxed{ \sf{Hypotenuse^{2}  = base^{2}  + height^{2} }}

Where,

  • Hypotenuse = 5 cm
  • Base = 3 cm
  • Height = OP cm

\implies \boxed{ \sf{5^{2}  = 3^{2}  + OP^{2} }}

\implies \boxed{ \sf{ OP^{2} =  {5}^{2}  -  {3}^{2}  }}

\implies \boxed{ \sf{ OP^{2} =  25  -  9 }}

\implies \boxed{ \sf{ OP^{2} =  16}}

\implies \boxed{ \sf{ OP =  \sqrt{16} }}

\implies \boxed{ \red{ \sf{  \therefore \: OP=  4cm}}}

The distance between the centre of the circle and chord is 4 cm

Similar questions