Math, asked by ds9320383717, 4 months ago

How to solve this By L.H.S ​

Attachments:

Answers

Answered by sumairadoll
1

Step-by-step explanation:

hence proved L.H.S is equal to R.H.S

Attachments:
Answered by Asterinn
8

Given :-

 \rm \:  \dfrac{tan \theta}{ {sin}^{2} \theta }  = sec  \theta \:cosec\theta

To prove :-

L.H.S = R.H.S

Proof :

 \rm \:  R.H.S = sec  \theta \:cosec\theta

\rm  \longrightarrow L.H.S =\dfrac{tan \theta}{ {sin}^{2} \theta }  \\ \\   \\ \rm  \longrightarrow tan \theta\times\dfrac{1}{ {sin}^{2} \theta } \\ \\ \\   \rm \: we \: know \: that \:   :  \rightarrow \: tan \: x =   \frac{sin \:x}{cos \:x}\\  \\  \\ \rm  \longrightarrow   \frac{sin \: \theta}{cos \: \theta} \times\dfrac{1}{ {sin}^{2} \theta } \\  \\  \\ \rm  \longrightarrow   \dfrac{1}{cos \: \theta} \times\dfrac{1}{ {sin}\theta } \\  \\   \\ \rm \: we \: know \: that \rightarrow\dfrac{1}{cos \: x} = sec \: x \: \:  and \:  \: \dfrac{1}{s in\: x} = cosec \: x \\  \\  \\ \rm  \longrightarrow   {sec \: \theta} \times{ cosec \theta } \\  \\  \\ \rm  \longrightarrow   {sec \: \theta} \: { cosec \theta }

Therefore, L.H.S = R.H.S

Hence proved

Similar questions