how to solve this equation "if x^2-3xy-2x=4 and y^2-xy+x+y=2
find the value of x-y.
I'm also not getting the ans..
Answers
x² - 3xy - 2x = 4
y = x² - 2x - 4
3x
y² - xy + x + y =2
y² - x(y - 1) + y = 2
x = y² + y - 2
y - 1
x = y² -y + 2y - 2
y - 1
x = y(y - 1) + 2(y - 1)
y - 1
x = (y + 2 )(y - 1)
( y - 1)
x = y + 2
x - y = y + 2 - x² - 2x - 4
3x
= 3x(y + 2) - x² + 2x + 4
3x
= 3xy + 6x - x² + 2x + 4
3x
If I made mistakes in claculation pls do it. I am tired of doing it.
Answer:
x^2 - 3xy - 2x = 4
x^2-2xy-xy-2x-4=0
x^2 -2xy + y^2 - y^2 - xy -2x - 4 = 0
(x - y)^2 - ( y^2 + xy + 2x + 4) = 0
(x - y)^2 = (y^2 + xy + 2x +4) ........equation 1
now;
second equation;
y^2 + xy + x + y = 2
y^2 + xy + x = 2 - y ...... equation 2
(x-y)^2 = (y^2 + xy + x) + x + 4
(x-y)^2 = (2 - y) + x + 4 ........... substituting from equation 2
(x-y)^2 = 2 + (x - y) + 4
(x-y)^2 = (x - y) + 6 .....................equation 3
let (x-y) be A
therefore;
A^2 - A - 6 = 0 ....modified equation 3
now solving by splitting the middle term factor
A^2 - (3A - 2A) - 6 = 0
A^2 - 3A + 2A - 6 = 0
A(A-3) + 2(A-3) = 0
(A+2)(A-3) = 0
therefore;
A = -2 or 3
or
(x - y) = -2 or 3
Step-by-step explanation: