Math, asked by seth87, 1 year ago

how to solve this problem ​

Attachments:

Answers

Answered by sivaprasath
3

(instead of θ, I use A,.)

Answer:

\frac{3}{4}

Step-by-step explanation:

Given :

tan A = \frac{1}{\sqrt{7}}

Then, the value of :

\frac{cosec^2A - sec^2A}{cosec^2A + sec^2A}

Solution :

We know that,

tanA= \frac{sinA}{cosA} = \frac{1}{\sqrt{7} }

⇒ sin A = 1 × k (for some constant k)

⇒ cos A = √7 × k = k√7

sinA = \frac{1}{cosecA} = \frac{1}{k}

cosA = \frac{1}{secA} = \frac{1}{k\sqrt{7}}

So,.

\frac{cosec^2A - sec^2A}{cosec^2A + sec^2A} = \frac{(\frac{1}{k}) ^2 - (\frac{1}{k\sqrt{7} } )^2}{(\frac{1}{k}) ^2 + (\frac{1}{k\sqrt{7} } )^2}

\frac{\frac{1}{k^2} - \frac{1}{7k^2} }{\frac{1}{k^2} + \frac{1}{7k^2}}

\frac{\frac{7}{7k^2} - \frac{1}{7k^2} }{\frac{7}{7k^2} + \frac{1}{7k^2}}

\frac{\frac{6}{7k^2}}{\frac{8}{7k^2} }

\frac{6}{7k^2} \div \frac{8}{7k^2}

\frac{6}{7k^2} \times \frac{7k^2}{8}

\frac{6}{8}=\frac{3}{4}


seth87: thaks thanks thanks .......
seth87: which class
sivaprasath: 12 (begining)
Similar questions