Math, asked by imrahul24, 11 months ago

how to solve this question ​

Attachments:

Answers

Answered by kaushik05
125

  \huge\mathfrak{solution} \\

Given:

 \bold{ \alpha  \: and \:  \beta are \: the \: roots \: of \:}  \\   \bold{  {x}^{2}  = x + 1}

To find :

 \frac{ { \alpha }^{2} }{ \beta }  -  \frac{ { \beta }^{2} }{ \alpha }  \\

Here :

p(x) = x^2-x-1=0

a= 1 b=-1 and c=-1

As we know that:

 \alpha  +  \beta  =  -  \frac{b}{a}  =  - ( \frac{ - 1}{1} ) = 1 \\

and

 \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 1}{1}  = 1

 \star \:  \frac{ { \alpha }^{2} }{ \beta }  -  \frac{ { \beta }^{2} }{ \alpha }  \\  \\  \star \frac{ { \alpha }^{3}  -  { \beta }^{3} }{ \alpha  \beta }

 \star \:  \frac{ {( \alpha  -  \beta )}^{3} + 3 \alpha  \beta ( \alpha  -  \beta ) }{ \alpha  \beta }  \\

 \star \: ( \alpha  -  \beta ) \frac{( { \alpha  -  \beta )}^{2}   +  3\alpha  \beta }{ \alpha  \beta }  \\

Option D is correct

  \boxed{ \red{- 2 \sqrt{5} }}

Now , solution refer to the attachment

Attachments:
Answered by parry8016
7

Answer:

OPTION=A

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions