Math, asked by Bobblehead, 9 months ago

how to solve tiz???


I'll mark BRAINLIEST
if u giv the right answer ​

Attachments:

Answers

Answered by SharmaShivam
2

Answer:

\sf{D=4r^2}

Step-by-step explanation:

\sf{Consider\:the\:quadratic\:equation\:ax^2+bx+c=0}

\sf{where\:a,b,c\:\epsilon\:R\:and\:a\:\neq\:0}

\sf{Roots\:of\:the\:equation\:are\:given\:by}

\sf{x=\dfrac{-b+\sqrt{b^2-4ac}}{2a}}

\sf{The\:nature\:of\:roots\:depends\:upon\:b^2-4ac}

\sf{This\:quantity\:is\:generally\:denoted\:by\:D\:and}

\sf{is\:known\:as\:the\:discriminant\:of\:the\:quadratic}

\sf{equation.}

\sf{Given\:equation\:is} \sf{x^2-2x-(r^2-1)}

\sf{D=b^2-4ac}

\sf{D=(-2)^2-4(-1)(-(r^2-1))}

\sf{D=4+4r^2-4}

\boxed{\sf{D=4r^2}}

Answered by dheerajk1912
0

Discriminant of quadratic equation is \mathbf{4r^{2}}

Step-by-step explanation:

  • Given data

       Quadratic equation is

       \mathbf{x^{2}-2x-(r^{2}-1)=0}     ...1)

  • On comparing above quadratic equation to standard equation \mathbf{ax^{2}+bx+c=0}             ...2)
  • So on comparing respective quantity of equation 1) , equation 2)

        a = 1

        b = -2

        \mathbf{c = -(r^{2}-1)}

  • We know the formula of discriminant

        \mathbf{D =b^{2}-4ac}                 ...3)

  • On putting respective value in equation 3)

        \mathbf{D =(-2)^{2}-4\times 1\times \left [ -(r^{2}-1) \right ]}

        \mathbf{D =4+4\times (r^{2}-1)}

        \mathbf{D =4+4r^{2}-4}

        So

        \mathbf{Discriminant =4r^{2}}        Answer

Similar questions