Math, asked by bikash1730, 11 months ago

How to split x^2-4 by using middle term method

Answers

Answered by Anonymous
31

Question :

How to split x^2-4 by using middle term method

Solution :

Solve this question by using identity

- = (a+b)(a-b)

so,

= x² - 4

= (x)² - (2)²

= (x+2)(x-2)

Some important identities :

  • (a+b)² = a² + b²+2ab
  • (a-b)² = a²+b²-2ab
  • a²-b² = (a+b)(a-b)
  • a³-b³ =(a-b)(a²+ab+b²)
  • (a+b)³ = a³+b³+3ab(a+b)
  • (a-b)³ = a³-b³-3ab(a-b)
Answered by amitkumar44481
50

AnsWer :

x = 2 and -2.

Given :

  • General equation ax²+bx+c =0.
  • x²-4 = 0.
  • The degree of given equation is 2, so we consider it have Quadratic equation.

Method Use,

  • Quadratic Formula.
  • Splitting the middle term.

Solution :

Let Try Alzebra,

we have Equation,

  \bullet \:  \tt{x}^{2}  - 4 = 0.

 \implies \tt  {x}^{2}  = 4.

 \implies \tt  x =   \sqrt{4} .

 \implies \tt  x =  \pm2.

Let try Quadratic formula,

 \bullet  \tt x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

Where as,

  • a = 1.
  • b = 0.
  • c = -4.

Now, Putting all above value in Quadratic formula, We get.

 \tt \implies x =  \frac{ - (0) \pm \sqrt{ {0}^{2}  - 4 \times 1 \times  - 4} }{2} .

 \tt\implies x =  \frac{ \pm \sqrt{16} }{2}

 \tt \implies x =  \frac{ \pm4}{2}

 \tt \implies x =  \frac{ \cancel4}{ \cancel2}  \:  \:  \: \:  \:  \:  \:  \red{ or} \:  \:  \:  \:  \:  \:  \: x =  \frac{ - \cancel 4}{ \cancel2}

 \tt\implies \: x = 2 \:  \:  \:  \:  \:  \:  \red{or} \:  \:  \:  \:  \:  \: x =  - 2

 \tt \implies x =  \pm2.

Therefore, the value of x²-4=0 is 2 and -2.

Similar questions