Physics, asked by sumitsharma42146, 7 hours ago

how u can solve it ✌️✌️​

Attachments:

Answers

Answered by Aryan0123
39

Question:

A force F is applied on a block at an angle θ. The block is having a displacement x. If work done by the force is Fx/2, then the angle θ is ____

\\

Answer:

Angle θ = 60°

\\

Explanation:

Given:

  • Force = F
  • Displacement = x
  • Work done = Fx/2

\\

To find:

Value of angle θ = ?

\\

Formula used:

To solve this question, we use the formula of Work done.

  \red{\boldsymbol{Work  \:  \: done = (Force)  \times (Displacement)  \times  (cos  \theta)}} \\  \\

Solution:

Applying the above formula,

 \implies \sf{ \dfrac{Fx}{2} = (F) \times (x) \times (cos \theta) } \\  \\

Cancelling F and x on both sides,

 \longrightarrow \:  \:  \sf{ \dfrac{1}{2} = cos \theta } \\  \\

Taking Cos inverse on both sides,

\longrightarrow \:  \: \sf{\theta = cos^{ - 1} \bigg( \dfrac{1}{2}  \bigg) } \\  \\

 \longrightarrow \:  \:  \sf{ \theta = 60^{ \circ} } \\  \\

 \therefore \:  \boxed{\underline{\bf{Angle \:  \:  \theta} =  {60}^{ \circ} }} \\  \\

Answered by okawde7
0

Answer:

Answer:

Angle θ = 60°

\begin{gathered}\\\end{gathered}

Explanation:

Given:

Force = F

Displacement = x

Work done = Fx/2

\begin{gathered}\\\end{gathered}

To find:

Value of angle θ = ?

\begin{gathered}\\\end{gathered}

★ Formula used:

To solve this question, we use the formula of Work done.

\begin{gathered} \red{\boldsymbol{Work \: \: done = (Force) \times (Displacement) \times (cos \theta)}} \\ \\ \end{gathered}

Workdone=(Force)×(Displacement)×(cosθ)

★ Solution:

Applying the above formula,

\begin{gathered} \implies \sf{ \dfrac{Fx}{2} = (F) \times (x) \times (cos \theta) } \\ \\ \end{gathered}

2

Fx

=(F)×(x)×(cosθ)

Cancelling F and x on both sides,

\begin{gathered} \longrightarrow \: \: \sf{ \dfrac{1}{2} = cos \theta } \\ \\ \end{gathered}

2

1

=cosθ

Taking Cos inverse on both sides,

\begin{gathered}\longrightarrow \: \: \sf{\theta = cos^{ - 1} \bigg( \dfrac{1}{2} \bigg) } \\ \\ \end{gathered}

⟶θ=cos

−1

(

2

1

)

\begin{gathered} \longrightarrow \: \: \sf{ \theta = 60^{ \circ} } \\ \\ \end{gathered}

⟶θ=60

\begin{gathered} \therefore \: \boxed{\underline{\bf{Angle \: \: \theta} = {60}^{ \circ} }} \\ \\ \end{gathered}

Angleθ=60

Similar questions