how we can use method of images in case of spherical grounded conductors to find the potential
Answers
The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics. The name originates from the replacement of certain elements in the original layout with imaginary charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).
The validity of the method of image charges rests upon a corollary of the uniqueness theorem, which states that the electric potential in a volume V is uniquely determined if both the charge density throughout the region and the value of the electric potential on all boundaries are specified. Alternatively, application of this corollary to the differential form of Gauss' Law shows that in a volume V surrounded by conductors and containing a specified charge density ρ, the electric field is uniquely determined if the total charge on each conductor is given. Possessing knowledge of either the electric potential or the electric field and the corresponding boundary conditions we can swap the charge distribution we are considering for one with a configuration that is easier to analyze, so long as it satisfies Poisson's equation in the region of interest and assumes the correct values at the boundaries.[1