Math, asked by Anonymous, 1 month ago

How will u prove that derivative of sin x = cos x?​

Answers

Answered by Anonymous
2

To prove :-

Derivative of \rm sin \,x = cos\,x

Solution :-

Let's assume that \rm f(x) = sin (x)

Now according to the first principles,

\rm\implies {\bf{f'(x) = \lim\limits_{h\to 0}\dfrac{f(x + h) - f(x) }{h}}}

\rm\implies f'(x) = \lim\limits_{h\to 0}\dfrac{sin(x + h) - sin(x) }{h}

Apply formula,

\bf sin \,A - sin\,B = 2\, cos\,\left(\dfrac{A+B}{2}\right).sin\left(\dfrac{A-B}{2}\right)

\rm\implies f'(x) = \lim\limits_{h\to 0}\dfrac{2\, cos\,\left(\dfrac{(x+h) + (x)}{2}\right).sin\left(\dfrac{(x+h)-(x)}{2}\right)}{h}

\rm\implies f'(x) = \lim\limits_{h\to 0}\dfrac{2\, cos\,\left(\dfrac{x+h+x}{2}\right).sin\left(\dfrac{x+h-x}{2}\right)}{h}

\rm\implies f'(x) = \lim\limits_{h\to 0}\dfrac{2\, cos\,\left(\dfrac{2x+h}{2}\right).sin\left(\dfrac{h}{2}\right)}{h}

\rm\implies f'(x) = \lim\limits_{h\to 0}\dfrac{\, cos\,\left(\dfrac{2x+h}{2}\right).sin\left(\dfrac{h}{2}\right)}{\left(\dfrac {h}{ 2} \right)}

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(\dfrac{2x+h}{2}\right) \right\}\times \lim\limits_{h\to 0}\left\{\dfrac{sin\left(\dfrac{h}{2}\right)}{\left(\dfrac {h}{ 2} \right)}\right\}

Here, since h is tending towards 0, h/2 will also tends to 0.

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(\dfrac{2x+h}{2}\right) \right\}\times \lim\limits_{h/2\to 0}\left\{\dfrac{sin\left(\dfrac{h}{2}\right)}{\left(\dfrac {h}{ 2} \right)}\right\}

We are aware about the formula,

\bf\lim\limits_{x\to0}\dfrac{sin\,x}{x} = 1

Applying this, we get :

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(\dfrac{2x+h}{2}\right) \right\}\times {\bf{\lim\limits_{h\to 0}\left\{\dfrac{sin\left(\dfrac{h}{2}\right)}{\left(\dfrac {h}{ 2} \right)}\right\}}}

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(\dfrac{2x+h}{2}\right) \right\}\times {\bf{1}}

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(\dfrac{2x+h}{2}\right) \right\}

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(\dfrac{2x}{2} + \dfrac{h}{2}\right) \right\}

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(x + \dfrac{h}{2}\right) \right\}

Now, solving the limit by direct substituition method :

\rm\implies f'(x) = \lim\limits_{h\to0}\left\{ cos\,\left(x + \dfrac{h}{2}\right) \right\}

\rm\implies f'(x) =\left\{ cos\,\left(x + \dfrac{0}{2}\right) \right\}

\rm\implies f'(x) =\left\{ cos\,\left(x + 0\right) \right\}

\rm\implies f'(x) =cos\,\left(x\right)

Hence derivative of \rm sin\,x = cos\,x

Similar questions