Math, asked by Anonymous, 25 days ago

How will you prove the chain rule of derivative using first principle?​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Definition of Chain Rule :

If f and g are differentiable functions, then f o g is also differentiable and is represented as

\rm :\longmapsto\:\boxed{ \tt{ \: (fog)'(x) = f'(g(x)) × g'(x) \: }}

Proof :-

Since, f and g are differentiable function, so

By definition of First Principal, we have

\rm :\longmapsto\:f'(x) \:  =  \: \displaystyle\lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

and

\rm :\longmapsto\:g'(x) \:  =  \: \displaystyle\lim_{h \to 0} \frac{g(x + h) - g(x)}{h}

Now, Consider

\rm :\longmapsto\:(fog)'(x) \:  =  \: \displaystyle\lim_{h \to 0} \frac{(fog)(x + h) -(fo g)(x)}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{f[g(x + h)] - f[g(x)]}{h}

can be rewritten as

  • after multiply and divide by g(x + h) - g(x),

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{f[g(x + h)] - f[g(x)]}{g(x + h) - g(x)}  \times  \frac{g(x + h) - g(x)}{h}

\rm \:  =  \:\displaystyle\lim_{h \to 0} \frac{f[g(x + h)] - f[g(x)]}{g(x + h) - g(x)}  \times  \displaystyle\lim_{h \to 0}\frac{g(x + h) - g(x)}{h}

\rm \:  =  \:f'[g(x) \times g'(x)

Hence,

 \red{\rm \implies\:\:\boxed{ \bf{ \: (fog)'(x) = f'(g(x)) × g'(x) \: }}}

More to know : -

 \green{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions