Math, asked by AVeryLongName, 15 days ago

How would one show that
\Large\textrm{$\sqrt[3]{3}+\sqrt{2}\  \textgreater \ \sqrt[3]{9}\  \textgreater \ \sqrt[4]{13}$}

No calculator, no approximation allowed.

Answers

Answered by user0888
7

(Because of the error, I added the answer in the attachment. Please view in browser mode. The app is blurry.)

We need to prove,

\rm\sqrt[3]{3}+\sqrt{2}>\sqrt[3]{9}>\sqrt[4]{13}

\;

So, what we need to show is,

\begin{cases} &\rm\sqrt[3]{3}+\sqrt{2}>\sqrt[3]{9} \\\\  &\rm \sqrt[3]{9}>\sqrt[4]{13} \end{cases}

\;

\textbf{- Showing the First Inequation}

Isolating square roots and cube roots,

\rm\sqrt{2}>\sqrt[3]{9}-\sqrt[3]{3}

\;

Let the value \rm\sqrt[3]{9}-\sqrt[3]{3} be \rm A.

\;

We know,

\boxed{\rm{(a+b)^{3}=a^{3}+b^{3}+3ab(a+b)}}

\rm{A^{3}}

\;

\rm=(\sqrt[3]{9})^{6}-(\sqrt[3]{3})^{3}-3\cdot(\sqrt[3]{9\cdot3})^{2}\cdot(\sqrt[3]{9}-\sqrt[3]{3})

\;

\rm =(3^{2}-3)-3\sqrt[3]{3^{3}}\cdot(\sqrt[3]{9}-\sqrt[3]{3})

\;

\rm =(3^{2}-3)-9(\sqrt[3]{9}-\sqrt[3]{3})

\;\;

\rm =6-9A

\;

\rm\therefore A=\sqrt[3]{9}-\sqrt[3]{3}\ \Longrightarrow\ A^{3}=6-9A

\;

We know,

\boxed{\rm a^{n}>b^{n}>1\iff a>b>1\ (n>1)}}

\rm2^{3}<9<3^{3}

\;

\rm\therefore2<\sqrt[3]{9}<3

\;

We know,

\boxed{\rm a^{n}>b^{n}>1\iff a>b>1\ (n>1)}}

\rm1^{3}<3<2^{3}

\;

\rm\therefore1<\sqrt[3]{3}<2

\;

By taking the difference of the inequations,

0<\sqrt[3]{9}-\sqrt[3]{3}<2

\;

\rm\therefore0[tex]\;

By cubing,

\rm1[tex]\;

\rm 1[tex]\;

\rm 1<6-9A<8

\;

\rm\dfrac{2}{9}[tex]\;

\dfrac{2}{9}<\sqrt[3]{9}-\sqrt[3]{3}<\dfrac{5}{9}

\;

By squaring,

\rm1^{2}<2<2^{2}\iff1<\sqrt{2}<2

\;

Then we obtain,

\rm\dfrac{2}{9}<\sqrt[3]{9}-\sqrt[3]{3}<\dfrac{5}{9}<1<\sqrt{2}<2

\;

\therefore\sqrt[3]{9}-\sqrt[3]{3}<\sqrt{2}

\;

Hence shown that,

\therefore\boxed{\rm{\sqrt[3]{3}+\sqrt{2}>\sqrt[3]{9}}}

\;

\textbf{- Showing the Second Inequation}

We know,

\boxed{\rm{a^{n}>b^{n}>1\iff a>b>1}}

\rm(\sqrt[3]{9})^{12}=9^{4}=6561,\ (\sqrt[4]{13})^{12}=13^{3}=2197

\;

Hence shown that,

\rm\therefore\boxed{\rm{\sqrt[3]{9}>\sqrt[4]{13}}}

\;

\textbf{- Result}

\therefore\boxed{\rm{\sqrt[3]{3}+\sqrt{2}>\sqrt[3]{9}>\sqrt[4]{13}}}

\;

\Large\textrm{Learn More}

\textbf{- Addition in Inequalities}

\boxed{\rm a_{1}[tex]\;

\textbf{- Subtraction in Inequalities}

\boxed{\rm a_{1}[tex]\;

To find the product or division, consider the signs first.

Let's consider positive numbers only.

\textbf{- Multiplication in Inequalities}

\boxed{\rm a_{1}[tex]\;

\textbf{- Division in Inequalities}

[tex]\boxed{\rm a_{1}

Attachments:
Similar questions