Chemistry, asked by jordierenee18, 2 months ago

How would you prepare a 1.0L solution of MgCl2 with a concentration of 1.4 M

Answers

Answered by manojchauhanma2
0

Answer:

Given that , \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x}

p

1

+

q

1

+

x

1

=

p+q+x

1

.

Need To Find : Value of x ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀Given that ,

\begin{gathered}\dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} \:\\\\ \end{gathered}

p

1

+

q

1

+

x

1

=

p+q+x

1

⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\boldsymbol{\star\:Now \: By \: Solving \: the \: Given \::}}\\\end{gathered}

⋆NowBySolvingtheGiven:

\begin{gathered}\dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} = \dfrac{1}{p + q + x} \:\\\\ \dashrightarrow \sf \dfrac{1}{p} + \dfrac{1}{q} + \dfrac{1}{x} - \dfrac{1}{p + q + x} = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{1}{p} + \dfrac{1}{q}\bigg] +\bigg[ \dfrac{1}{x} - \dfrac{1}{p + q + x} \bigg] = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[ \dfrac{(x + p + q )- x }{x ( p + q + x ) } \bigg] = 0 \:\\\\\dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[ \dfrac{x + p + q - x }{x ( p + q + x ) } \bigg] = 0 \:\\\\\dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[ \dfrac{x + p + q - x }{x ( p + q + x ) } \bigg] = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{p + q }{pq}\bigg] +\bigg[ \dfrac{ p + q }{x ( p + q + x ) } \bigg] = 0 \:\\\\ \dashrightarrow \sf ( p + q ) \bigg[ \dfrac{1}{pq} + \dfrac{ 1 }{x ( p + q + x ) } \bigg] = 0 \:\\\\ \dashrightarrow \sf ( p + q ) \bigg[ \dfrac{ x^2 + xp + xq + pq }{ (pq) (x) ( p + q + x ) } \bigg] = 0 \:\\\\\dashrightarrow \sf ( p + q ) \bigg[ \dfrac{ x^2 + xq + xp + pq }{ (pq) (x) ( p + q + x ) } \bigg] = 0 \:\\\\ \dashrightarrow \sf ( p + q ) \bigg[ \dfrac{ x( x + q ) + p ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg] = 0 \:\\\\\dashrightarrow \sf ( p + q ) \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg] = 0 \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg] = \dfrac{0}{( p + q )} \:\\\\ \dashrightarrow \sf \bigg[ \dfrac{ ( x + p ) ( x + q ) }{ (pq) (x) ( p + q + x ) } \bigg] = 0 \:\\\\ \dashrightarrow \sf ( x + p ) ( x + q ) = 0 \times (pq) (x) ( p + q + x ) \:\\\\ \dashrightarrow \sf ( x + p ) ( x + q ) = 0 \:\\\\ \dashrightarrow \sf \:x\:=\:-p \:\:or\:\: x \:=\:-q \:\\\\ \end{gathered}

p

1

+

q

1

+

x

1

=

p+q+x

1

p

1

+

q

1

+

x

1

p+q+x

1

=0

⇢[

p

1

+

q

1

]+[

x

1

p+q+x

1

]=0

⇢[

pq

p+q

]+[

x(p+q+x)

(x+p+q)−x

]=0

⇢[

pq

p+q

]+[

x(p+q+x)

x+p+q−x

]=0

⇢[

pq

p+q

]+[

x(p+q+x)

x+p+q−x

]=0

⇢[

pq

p+q

]+[

x(p+q+x)

p+q

]=0

⇢(p+q)[

pq

1

+

x(p+q+x)

1

]=0

⇢(p+q)[

(pq)(x)(p+q+x)

x

2

+xp+xq+pq

]=0

⇢(p+q)[

(pq)(x)(p+q+x)

x

2

+xq+xp+pq

]=0

⇢(p+q)[

(pq)(x)(p+q+x)

x(x+q)+p(x+q)

]=0

⇢(p+q)[

(pq)(x)(p+q+x)

(x+p)(x+q)

]=0

⇢[

(pq)(x)(p+q+x)

(x+p)(x+q)

]=

(p+q)

0

⇢[

(pq)(x)(p+q+x)

(x+p)(x+q)

]=0

⇢(x+p)(x+q)=0×(pq)(x)(p+q+x)

⇢(x+p)(x+q)=0

⇢x=−porx=−q

\begin{gathered}\dashrightarrow \:\underline {\boxed{\purple {\pmb{\frak{\:\:x\:=\:-p \:\:or\:\: \:-q \:}}}}}\:\:\bigstar \:\:\\\\\end{gathered}

x=−por−q

x=−por−q

\begin{gathered}\qquad \therefore \underline {\sf Hence, The \:value \:of \: x \:can \: be \:\pmb{\bf{ - p \: or \:-q \:}}.}\\\end{gathered}

Hence,Thevalueofxcanbe

−por−q

−por−q.

2)

Question:-

If ( 2 - √5 )/( 2 + √5 ) =a√5 + b , then find the value of a and b.

To Find:-

Find the value of a and b.

Solution:-

\dashrightarrow\sf \: \dfrac { 2 - \sqrt { 5 } } { 2 + \sqrt { 5 } } = a \sqrt { 5 } + b⇢

2+

5

2−

5

=a

5

+b

Rationalise the denominator

\dashrightarrow\sf \: \dfrac { 2 - \sqrt { 5 } } { 2 + \sqrt { 5 } } \times \dfrac { 2 - \sqrt { 5 } } { 2 - \sqrt { 5 } } = a \sqrt { 5 } + b⇢

2+

5

2−

5

×

2−

5

2−

5

=a

5

+b

\dashrightarrow\sf \: \dfrac { { ( 2 - \sqrt { 5 } ) }^{ 2 } } { ( 2 + \sqrt { 5 } )( 2 - \sqrt { 5 } ) } = a \sqrt { 5 } + b⇢

(2+

5

)(2−

5

)

(2−

5

)

2

=a

5

+b

\dashrightarrow\sf \: \dfrac { 4 + 5 - 4 \sqrt { 5 } } { 4 - 5 } = a \sqrt { 5 } + b⇢

4−5

4+5−4

5

=a

5

+b

\dashrightarrow\sf \: \dfrac { - ( 9 + 4 \sqrt { 5 } ) } { - 1 } = a \sqrt { 5 } + b⇢

−1

−(9+4

5

)

=a

5

+b

\dashrightarrow\sf \: 9 + 4 \sqrt { 5 } = a \sqrt { 5 } + b⇢9+4

5

=a

5

+b

Hence ,

a = 4 , b = 9

Explanation:

please mark brainlist please

Similar questions