how x=cos theeta
see the pic
Attachments:
Answers
Answered by
3
in the line before arrow you did a mistake
X sin ( sin ^2 + cos ^2) = sin cos
X sin = sin cos
X = cos
X sin ( sin ^2 + cos ^2) = sin cos
X sin = sin cos
X = cos
Answered by
2
The full question :
x sin θ = y cos θ
Given that :
x sin³θ + y cos³θ = sin θ cos θ
Your steps were wrong .
Here is the correct one :
x sin³ θ + y cos³ θ = sin θ cos θ
⇒ x sin θ ( sin² θ ) + y cos³θ = sin θ cos θ
⇒ y cos θ ( sin²θ ) + y cos³θ = sin θ cos θ
Cancel cos θ both sides :
⇒ y sin²θ + y cos²θ = sin θ
⇒ y ( sin²θ + cos²θ ) = sin θ
Since sin²θ + cos²θ = 1
⇒ y = sin θ
Hence proved.
Similar questions