Math, asked by jordaniskind, 4 months ago

how you take a pattern and find the General Term.

Answers

Answered by kalechatimadhuri
0

Answer:

A sequence is a function whose domain is an ordered list of numbers. These numbers are positive integers starting with 1. Sometimes, people mistakenly use the terms series and sequence. A sequence is a set of positive integers while series is the sum of these positive integers. The denotation for the terms in a sequence is:

a1, a2, a3, a4, an, . . .

Finding the nth term of a sequence is easy given a general equation. But doing it the other way around is a struggle. Finding a general equation for a given sequence requires a lot of thinking and practice but, learning the specific rule guides you in discovering the general equation. In this article, you will learn how to induce the patterns of sequences and write the general term when given the first few terms. There is a step-by-step guide for you to follow and understand the process and provide you with clear and correct computations.

A sequence is a function whose domain is an ordered list of numbers. These numbers are positive integers starting with 1. Sometimes, people mistakenly use the terms series and sequence. A sequence is a set of positive integers while series is the sum of these positive integers. The denotation for the terms in a sequence is:

a1, a2, a3, a4, an, . . .

Finding the nth term of a sequence is easy given a general equation. But doing it the other way around is a struggle. Finding a general equation for a given sequence requires a lot of thinking and practice but, learning the specific rule guides you in discovering the general equation. In this article, you will learn how to induce the patterns of sequences and write the general term when given the first few terms. There is a step-by-step guide for you to follow and understand the process and provide you with clear and correct computations.

2. Solve the first common difference of a. Consider the solution as a tree diagram. There are two conditions for this step. This process applies only to sequences whose nature are either linear or quadratic.

Condition 1: If the first common difference is a constant, use the linear equation ax + b = 0 in finding the general term of the sequence.

a. Pick two pairs of numbers from the table and form two equations. The value of n from the table corresponds to the x in the linear equation, and the value of an corresponds to the 0 in the linear equation.

a(n) + b = an

b. After forming the two equations, calculate a and b using the subtraction method.

c. Substitute a and b to the general term.

d. Check if the general term is correct by substituting the values in the general equation. If the general term does not meet the sequence, there is an error with your calculations.

Condition 2: If the first difference is not constant and the second difference is constant, use the quadratic equation ax2 + b(x) + c = 0.

a. Pick three pairs of numbers from the table and form three equations. The value of n from the table corresponds to the x in the linear equation, and the value of an corresponds to the 0 in the linear equation.

an2 + b(n) + c = an

b. After forming the three equations, calculate a, b, and c using the subtraction method.

c. Substitute a, b, and c to the general term.

d. Check if the general term is correct by substituting the values in the general equation. If the general term does not meet the sequence, there is an error with your calculations.

Answered by BrokenHeart2206
6

General Term

An arithmetic sequence is a linear function. Instead of y=mx+b, we write an=dn+c where d is the common difference and c is a constant (not the first term of the sequence, however). A recursive definition, since each term is found by adding the common difference to the previous term is ak+1=ak+d.

Hope it helps u bro.

Hope \:  it \:  helps  \: u \:  bro.

#Twinkle⭐。◕‿◕。

Similar questions