Math, asked by amirdesh000, 10 months ago

hshshsshehshshsgsvvss​

Attachments:

Answers

Answered by poojasahu0008pd3hls
0

Answer:

I think in that question we have to find that it is a quadratic equation or not?

Step-by-step explanation:

It is not a quadratic equation because according to:

ax^2+bx+c=0

but here √5x is 5^1/2 and in quadratic equation only integer is allow so it is not a quadratic equation.

Answered by varadad25
47

Correct Question:

Solve the following quadratic equation by factorisation method:

\sf\:3x^2\:+\:5\:\sqrt{5}\:x\:-\:10\:=\:0

Answer:

The roots of the given quadratic equation are

\boxed{\red{\sf\:x\:=\:-\:2\:\sqrt{5}}}\sf\:\:\:or\:\:\:\boxed{\red{\sf\:x\:=\:\frac{\sqrt{5}}{3}}}

Step-by-step-explanation:

The given quadratic equation is q

\sf\:3x^2\:+\:5\:\sqrt{5}\:x\:-\:10\:=\:0

\therefore\sf\:3x^2\:+\:5\:\sqrt{5}\:x\:-\:10\:=\:0\\\\\\\implies\sf\:3x^2\:+\:6\:\sqrt{5}\:x\:-\:\sqrt{5}\:x\:-\:10\:=\:0\\\\\\\implies\sf\:3x^2\:+\:6\:\sqrt{5}\:x\:-\:\sqrt{5}\:x\:-\:\sqrt{5}\:\times\:\sqrt{5}\:\times\:2\:=\:0\:\:\:-\:-\:-\:[\:Expressing\:in\:terms\:of\:\sqrt{5}\:]\\\\\\\implies\sf\:3x\:(\:x\:+\:2\:\sqrt{5}\:)\:-\:\sqrt{5}\:(\:x\:+\:2\:\sqrt{5}\:)\:=\:0\\\\\\\implies\sf\:(\:x\:+\:2\:\sqrt{5}\:)\:(\:3x\:-\:\sqrt{5}\:)\:=\:0\\\\\\\implies\sf\:x\:+\:2\:\sqrt{5}\:=\:0\:\:\:or\:\:\:3x\:-\:\sqrt{5}\:=\:0\\\\\\\implies\sf\:x\:=\:-\:2\:\sqrt{5}\:\:\:or\:\:\:3x\:=\:\sqrt{5}\\\\\\\implies\boxed{\red{\sf\:x\:=\:-\:2\:\sqrt{5}}}\sf\:\:\:or\:\:\:\boxed{\red{\sf\:x\:=\:\frac{\sqrt{5}}{3}}}

\\

Additional Information:

1. Quadratic Equation:

An equation having a degree '2' is called quadratic equation.

The general form of quadratic equation is

ax² + bx + c = 0

Where, a, b, c are real numbers and a ≠ 0.

2. Roots of Quadratic Equation:

The roots means nothing but the value of the variable given in the equation.

3. Methods of solving quadratic equation:

There are mainly three methods to solve or find the roots of the quadratic equation.

A) Factorization method

B) Completing square method

C) Formula method

4. Solution of Quadratic Equation by Factorization:

1. Write the given equation in the form \sf{ax^{2}\:+\:bx\:+\:c\:=\:0}

2. Find the two linear factors of the \sf\:LHS of the equation.

3. Equate each of those linear factor to zero.

4. Solve each equation obtained in 3 and write the roots of the given quadratic equation.

Similar questions