Math, asked by trisha10433, 1 year ago

hy
help me with this​

Attachments:

Answers

Answered by Tomboyish44
11

Given:

∠C = 90°

BC = a

CA = b

AB = c

'p' a perpendicular is drawn to AB.

To Prove:

(i) cp = ab

(ii) 1/p² = 1/a² = 1/b²

Proof:

\sf (i) \ ar(ACB) \ = \dfrac{1}{2} \times bh

\sf ar(ACB) \ = \dfrac{1}{2} \times ab

\longrightarrow 2ar(ACB) = ab → Eq1

\sf (i) \ ar(CBA) \ = \dfrac{1}{2} \times bh

\sf ar(CBA) \ = \dfrac{1}{2} \times cp

\longrightarrow 2ar(CBA) = cp → Eq2

From Eq1 and Eq2,

a × b = c × p

∴ ab = cp → (Eq3)

Hence Proved.

(ii) From Eq3,

ab = cp

Transposing we get,

\sf \dfrac{ab}{c} = p

Taking reciprocal we get,

\sf \dfrac{c}{ab} = \dfrac{1}{p}

On Squaring both sides,  

\sf (\dfrac{c}{ab})^{2} = \sf (\dfrac{1}{p})^{2}

\sf \dfrac{c^{2}}{a^{2}b^{2}} = \dfrac{1}{p^{2}}

By using pythagoras theorem we know that,

c² = a² + b²

Using this in the previous step we get,

\sf \dfrac{a^{2} + b^{2}}{a^{2}b^{2}} = \dfrac{1}{p^{2}}

\sf \dfrac{a^{2}}{a^{2}b^{2}} + \dfrac{b^{2}}{a^{2}b^{2}} = \dfrac{1}{p^{2}}

Cancelling a² and b² we get,

\sf \dfrac{1}{b^{2}} + \dfrac{1}{a^{2}} = \dfrac{1}{p^{2}}

By adjusting the places,

\sf \dfrac{1}{p^{2}} = \dfrac{1}{a^{2}} + \dfrac{1}{b^{2}}

Hence Proved.

Attachments:

Tomboyish44: Thanks for the Brainliest!
Similar questions