Physics, asked by vitthalgoley9751, 9 months ago

Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K. (a) Calculate the mean speed of the molecules. (b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?

Answers

Answered by bestwriters
1

(a) The mean speed of the molecules is 1780 m/s

(b) The number of molecules strike each square metre of the wall per second is 1.2 × 10²⁸.

Given:

Pressure = P = 1 atm = 10⁵ Pascals

Temperature = T  = 300 K

Mass = M = 2 g =2\times10^{-3} \ kg

Solution:

(a) Mean velocity is given by the formula:

V_{\mathrm{avg}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}

On substituting known values, we get,

V_{\mathrm{avg}}=\sqrt{\frac{8 \times 8.3 \times 300}{3.14 \times 2 \times 10^{-3}}}

\therefore V_{\mathrm{avg}}=1781.004 \approx 1780 \ \mathrm{m} / \mathrm{s}

(b) Angle the molecule strike = 45°

The number of molecules which are striking per unit area is given by the formula:

n=\frac{\text { Force }}{\sqrt{2} m v \times \text { Area }}

Pressure is force per unit area.

n=\frac{\text { Pressure }}{\sqrt{2} m V}

On substituting the known values, we get,

n=\frac{10^{5}}{\frac{\sqrt{2} \times 2 \times 10^{-3} \times 1780}{6 \times 10^{23}}}

n=\frac{3}{\sqrt{2} \times 1780} \times 10^{31}

n=1.19 \times 10^{-3} \times 10^{31}

Thus, the number of molecules is:

\therefore n=1.19 \times 10^{28} \approx 1.2 \times 10^{28}

Answered by rahul123437
3

(a) The mean speed of the molecules is 1780 \frac{m}{s}

(b) Number of molecules strike each square meter of the wall per second 1.2 \times 10^{28}

Explanation:

Given Data

P=10^{5} \mathrm{Pa}

T = 300 K

Mass of Hydrogen ,  \mathrm{M}=2 \times 10^{-3} \mathrm{kg}

(a) we know average speed  

v=\sqrt{\frac{8 R T}{\pi M}}

=\sqrt{\frac{8 \times 8.3 \times 300 \times 7}{2 \times 10^{-3} \times 22}}

=\sqrt{\frac{2400 \times 58.1}{44 \times 10^{-3}}}

=\sqrt{\frac{139440}{44 \times 10^{-3}}}

=\sqrt{3169090.909}

=1780 \frac{m}{s}

Let's take a cubic volume of 1 m^{3}.

V=1 m^{3}

Momentum of 1 natural molecule before collision to the striking surface = \mu sin45^\circ

Momentum of 1 normal molecule to striking surface following collision = - \mu sin45^\circ

\text { Shift in molecule impulse }=2 \mathrm{\mu} \sin 45^{\circ}=2 \mathrm{\mu} \frac{1}{\sqrt{2}}=\sqrt{2} \mathrm{\mu}

\text {Change in n molecules impulse} =2 \mu \sin 45^{\circ}=2 \mu \frac{1}{\sqrt{2}}=\sqrt{2} \mu

Let the time taken to change the momentum be omitted.

\text {Force per unit area by single molecule }=\sqrt{2} \frac{\mu}{\Delta t}

\text {Pressure observed from collision with molecules} =\sqrt{2} \frac{\mu}{\Delta t}=10^{5}

 n = \frac{\sqrt{2} \frac{\mu}{\Delta t}}{\sqrt{2} \frac{\mu}{\Delta t}}

n=\frac{10^{5}}{\sqrt{2} \mu}

6.0 \times 10^{23} \text { molecules }=2 \times 10^{-3} \mathrm{kg}

\text { 1 molecule }=\frac{2 \times 10^{-3}}{6 \times 10^{28}}=3.3 \times 10^{-27} \mathrm{kg}

n=\frac{10^{5}}{\sqrt{2} \times 3.3 \times 10^{-27} \times 1780}

n=1.2 \times 10^{28}

Therefore, the mean speed of the molecules is 1780 \frac{m}{s}  and the number of molecules strike each square meter of the wall per second is  1.2 \times 10^{28}

Similar questions